Abstract
We propose a novel method for applying active learning strategies to interactive 3D image segmentation. Active learning has been recently introduced to the field of image segmentation. However, so far discussions have focused on 2D images only. Here, we frame interactive 3D image segmentation as a classification problem and incorporate active learning in order to alleviate the user from choosing where to provide interactive input. Specifically, we evaluate a given segmentation by constructing an “uncertainty field” over the image domain based on boundary, regional, smoothness and entropy terms. We then calculate and highlight the plane of maximal uncertainty in a batch query step. The user can proceed to guide the labeling of the data on the query plane, hence actively providing additional training data where the classifier has the least confidence. We validate our method against random plane selection showing an average DSC improvement of 10% in the first five plane suggestions (batch queries). Furthermore, our user study shows that our method saves the user 64% of their time, on average.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vision 22(1), 61–79 (1997)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Proc. 10(2), 266–277 (2001)
Grady, L.: Random walks for image segmentation. IEEE Trans. Pat. Anal. and Mach. Intel. 28(11), 1768–1783 (2006)
Grady, L., Schiwietz, T., Aharon, S., Westermann, R.: Random walks for interactive organ segmentation in two and three dimensions: Implementation and validation. In: Duncan, J., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 773–780. Springer, Heidelberg (2005)
Li, J., Bioucas-Dias, J., Plaza, A.: Supervised hyperspectral image segmentation using active learning. In: 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1–4 (2010)
Ma, A., Patel, N., Li, M., Sethi, I.: Confidence based active learning for whole object image segmentation. In: Gunsel, B., Jain, A., Tekalp, A., Sankur, B. (eds.) MRCS 2006. LNCS, vol. 4105, pp. 753–760. Springer, Heidelberg (2006)
Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 191–198. ACM, New York (1995)
Olabarriaga, S., Smeulders, A.: Interaction in the segmentation of medical images: a survey. Med. Image Anal. 5(2), 127–142 (2001)
Pavlopoulou, C., Kak, A.C., Brodley, C.: Application of semi-supervised and active learning to interactive contour delineation. In: ICML 2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, pp. 26–33 (2003)
Rother, C., Kolmogorov, V., Blake, A.: GrabCutTM: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics 23, 309–314 (2004)
Settles, B.: Active learning literature survey. Tech. Rep. 1648, University of Wisconsin-Madison (2010)
Top, A., Hamarneh, G., Abugharbieh, R.: Spotlight: Automated confidence-based user guidance for increasing efficiency in interactive 3D image segmentation. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 204–213. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Top, A., Hamarneh, G., Abugharbieh, R. (2011). Active Learning for Interactive 3D Image Segmentation. In: Fichtinger, G., Martel, A., Peters, T. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. Lecture Notes in Computer Science, vol 6893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23626-6_74
Download citation
DOI: https://doi.org/10.1007/978-3-642-23626-6_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23625-9
Online ISBN: 978-3-642-23626-6
eBook Packages: Computer ScienceComputer Science (R0)