Advertisement

Regurgitation Quantification Using 3D PISA in Volume Echocardiography

  • Leo Grady
  • Saurabh Datta
  • Oliver Kutter
  • Christophe Duong
  • Wolfgang Wein
  • Stephen H. Little
  • Stephen R. Igo
  • Shizhen Liu
  • Mani Vannan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)

Abstract

We present the first system for measurement of proximal isovelocity surface area (PISA) on a 3D ultrasound acquisition using modified ultrasound hardware, volumetric image segmentation and a simple efficient workflow. Accurate measurement of the PISA in 3D flow through a valve is an emerging method for quantitatively assessing cardiac valve regurgitation and function. Current state of the art protocols for assessing regurgitant flow require laborious and time consuming user interaction with the data, where a precise execution is crucial for an accurate diagnosis. We propose a new improved 3D PISA workflow that is initialized interactively with two points, followed by fully automatic segmentation of the valve annulus and isovelocity surface area computation. Our system is first validated against several in vitro phantoms to verify the calculations of surface area, orifice area and regurgitant flow. Finally, we use our system to compare orifice area calculations obtained from in vivo patient imaging measurements to an independent measurement and then use our system to successfully classify patients into mild-moderate regurgitation and moderate-severe regurgitation categories.

Keywords

Mitral Regurgitation Valve Annulus Regurgitant Volume Vena Contracta Random Walker Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Buck, T., Plicht, B., Hunold, P., Mucci, R., Erbel, R., Levine, R.: Broad-beam spectral Doppler sonification of the vena contracta using matrix-array technology-a new solution for semi-automated quantification of mitral regurgitant flow volume and orifice area. J. Am. Coll. Cardiol. 45, 770–779 (2005)CrossRefGoogle Scholar
  2. 2.
    DeGroff, C., Shandas, R., Valdes-Cruz, L.: Analysis of the effect of flow rate on the Doppler continuity equation for stenotic orifice area calculations: a numerical study. Circ. 97(16) (1998)Google Scholar
  3. 3.
    Enriquez-Sarano, M.: Timing of mitral valve surgery. Heart, 79–85 (2002)Google Scholar
  4. 4.
    Grady, L.: Random walks for image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  5. 5.
    Lang, R., Mor-Avi, V., Sugeng, L., Nieman, P., Sahn, D.: Three-dimensional echocardiography: The benefits of the additional dimension. J. Am. Coll. Cardiol. 48, 2053–2669 (2006)CrossRefGoogle Scholar
  6. 6.
    Little, S., Igo, S., McCulloch, M., Hartley, C., Nosé, Y., Zoghbi, W.: Three-dimensional ultrasound imaging model of mitral valve regurgitation: design and evaluation. Ultrasound in Med. Biol. 34(4), 647–654 (2008)CrossRefGoogle Scholar
  7. 7.
    Matsumura, Y., Fukuda, S., Tran, H., Greenberg, N., Agler, D., Wada, N., Toyono, M., Thomas, J.: Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. AHJ, 155–231 (2008)Google Scholar
  8. 8.
    Pirat, B., Little, S., Igo, S., McCulloch, M., Nosé, Y., Hartley, C., Zoghbi, W.: Direct measurement of proximal isovelocity surface area by real-time three-dimensional color Doppler for quantitation of aortic regurgitant volume: an in vitro validation. J. Am. Soc. Echo. 22(3), 306–313 (2009)CrossRefGoogle Scholar
  9. 9.
    Schneider, R., Perrin, D., Vasilyev, N., Marx, G., del Nido, P., Howe, R.: Mitral annulus segmentation from 3D ultrasound using graph cuts. IEEE TMI 29(9), 1676–1687 (2010)Google Scholar
  10. 10.
    Singaraju, D., Grady, L., Vidal, R.: Interactive image segmentation of quadratic energies on directed graphs. In: Proc. of CVPR (June 2008)Google Scholar
  11. 11.
    Yosefy, C., Levine, R., Solis, J., Vaturi, M., Handschumacher, M., Hung, J.: Proximal flow convergence region as assessed by real-time 3-dimensional echocardiography: challenging the hemispheric assumption. J. Am. Soc. Echo. (2007)Google Scholar
  12. 12.
    Zoghbi, W., Enriquez-Sarano, M., Foster, E., Grayburn, P., Kraft, C., Levine, R., Nihoyannopoulos, P., Otto, C., Quinones, M., Rakowski, H.: Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J. Am. Soc. Echo. 16, 777–802 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Leo Grady
    • 1
  • Saurabh Datta
    • 2
  • Oliver Kutter
    • 1
  • Christophe Duong
    • 2
  • Wolfgang Wein
    • 3
  • Stephen H. Little
    • 4
  • Stephen R. Igo
    • 4
  • Shizhen Liu
    • 5
  • Mani Vannan
    • 5
  1. 1.Siemens Corporate ResearchPrincetonUSA
  2. 2.Siemens HealthcareUltrasound Business UnitUSA
  3. 3.White Lion Technologies AGMunichGermany
  4. 4.Methodist DeBakey Heart and Vascular CenterHoustonUSA
  5. 5.Ohio State UniversityColumbusUSA

Personalised recommendations