Advertisement

Myocardial Segmentation of Late Gadolinium Enhanced MR Images by Propagation of Contours from Cine MR Images

  • Dong Wei
  • Ying Sun
  • Ping Chai
  • Adrian Low
  • Sim Heng Ong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)

Abstract

Automatic segmentation of myocardium in Late Gadolinium Enhanced (LGE) Cardiac MR (CMR) images is often difficult due to the intensity heterogeneity resulting from accumulation of contrast agent in infarcted areas. In this paper, we propose an automatic segmentation framework that fully utilizes shared information between corresponding cine and LGE images of a same patient. Given myocardial contours in cine CMR images, the proposed framework achieves accurate segmentation of LGE CMR images in a coarse-to-fine manner. Affine registration is first performed between the corresponding cine and LGE image pair, followed by nonrigid registration, and finally local deformation of myocardial contours driven by forces derived from local features of the LGE image. Experimental results on real patient data with expert outlined ground truth show that the proposed framework can generate accurate and reliable results for myocardial segmentation of LGE CMR images.

Keywords

Segmentation Result Normalize Mutual Information Pattern Intensity Cine Image Nonrigid Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ciofolo, C., Fradkin, M., Mory, B., Hautvast, G., Breeuwer, M.: Automatic myocardium segmentation in late-enhancement MRI. In: IEEE ISBI 2008, pp. 225–228 (May 2008)Google Scholar
  2. 2.
    Delingette, H.: General object reconstruction based on simplex meshes. International Journal of Computer Vision 32, 111–146 (1999)CrossRefGoogle Scholar
  3. 3.
    Dikici, E., ODonnell, T., Setser, R., White, R.D.: Quantification of Delayed Enhancement MR Images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 250–257. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Evangelidis, G., Psarakis, E.: Parametric image alignment using enhanced correlation coefficient maximization. IEEE TPAMI 30(10), 1858–1865 (2008)CrossRefGoogle Scholar
  5. 5.
    Hautvast, G., Lobregt, S., Breeuwer, M., Gerritsen, F.: Automatic contour propagation in cine cardiac magnetic resonance images. IEEE T-MI 25(11), 1472–1482 (2006)Google Scholar
  6. 6.
    Penney, G., Weese, J., Little, J., Desmedt, P., Hill, D., Hawkes, D.: A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE T-MI 17(4), 586–595 (1998)Google Scholar
  7. 7.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE T-MI 18(8), 712–721 (1999)Google Scholar
  8. 8.
    Tao, Q., Milles, J., Zeppenfeld, K., Lamb, H., Bax, J., Reiber, J., van der Geest, R.: Automated segmentation of myocardial scar in late enhancement MRI using combined intensity and spatial information. Magnetic Resonance in Medicine 64(2), 586–594 (2010)Google Scholar
  9. 9.
    Weese, J., Buzug, T., Lorenz, C., Fassnacht, C.: An approach to 2D/3D registration of a vertebra in 2D x-ray fluoroscopies with 3D CT images. In: Troccaz, J., Grimson, E., Mösges, R. (eds.) CVRMed-MRCAS 1997. LNCS, vol. 1205, pp. 119–128. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dong Wei
    • 1
  • Ying Sun
    • 1
  • Ping Chai
    • 2
  • Adrian Low
    • 2
  • Sim Heng Ong
    • 1
  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingapore
  2. 2.Cardiac DepartmentNational University Heart CentreSingapore

Personalised recommendations