Order Preserving and Shape Prior Constrained Intra-retinal Layer Segmentation in Optical Coherence Tomography

  • Fabian Rathke
  • Stefan Schmidt
  • Christoph Schnörr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)


We present a probabilistic approach to the segmentation of OCT scans of retinal tissue. By combining discrete exact inference and a global shape prior, accurate segmentations are computed that preserve the physiological order of intra-retinal layers. A major part of the computations can be performed in parallel. The evaluation reveals robustness against speckle noise, shadowing caused by blood vessels, and other scan artifacts.


Optical Coherence Tomography Optical Coherence Tomography Image Global Shape Speckle Noise Shape Prior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Koozekanani, D., Boyer, K., Roberts, C.: Retinal thickness measurements from optical coherence tomography using a Markov boundary model. IEEE T. Med. Imaging 20(9), 900–916 (2001)CrossRefGoogle Scholar
  2. 2.
    Garvin, M., Abramoff, M., Wu, X., Russell, S., Burns, T., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE T. Med. Imaging 28(9), 1436–1447 (2009)CrossRefGoogle Scholar
  3. 3.
    Yazdanpanah, A., Hamarneh, G., Smith, B.R., Sarunic, M.V.: Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE T. Med. Imaging 30(2), 484–496 (2011)CrossRefGoogle Scholar
  4. 4.
    Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall/CRC, London (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. 61(3), 611–622 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fabian Rathke
    • 1
  • Stefan Schmidt
    • 2
  • Christoph Schnörr
    • 1
    • 2
  1. 1.Image & Pattern Analysis Group (IPA)University of HeidelbergGermany
  2. 2.Heidelberg Collaboratory for Image Processing (HCI)Germany

Personalised recommendations