Midbrain Segmentation in Transcranial 3D Ultrasound for Parkinson Diagnosis

  • Seyed-Ahmad Ahmadi
  • Maximilian Baust
  • Athanasios Karamalis
  • Annika Plate
  • Kai Boetzel
  • Tassilo Klein
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)

Abstract

Ultrasound examination of the human brain through the temporal bone window, also called transcranial ultrasound (TC-US), is a completely non-invasive and cost-efficient technique, which has established itself for differential diagnosis of Parkinson’s Disease (PD) in the past decade. The method requires spatial analysis of ultrasound hyper-echogenicities produced by pathological changes within the Substantia Nigra (SN), which belongs to the basal ganglia within the midbrain. Related work on computer aided PD diagnosis shows the urgent need for an accurate and robust segmentation of the midbrain from 3D TC-US, which is an extremely difficult task due to poor image quality of TC-US. In contrast to 2D segmentations within earlier approaches, we develop the first method for semi-automatic midbrain segmentation from 3D TC-US and demonstrate its potential benefit on a database of 11 diagnosed Parkinson patients and 11 healthy controls.

Keywords

Substantia Nigra Shape Model Statistical Shape Model Shape Vector Ground Truth Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Becker, G., Seufert, J., Bogdahn, U., Reichmann, H., Reiners, K.: Degeneration of substantia nigra in chronic parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45(1), 182–184 (1995)CrossRefGoogle Scholar
  2. 2.
    Berg, D., Godau, J., Walter, U.: Transcranial sonography in movement disorders. Lancet Neurology 7, 1044–1055 (2008)CrossRefGoogle Scholar
  3. 3.
    Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Chen, L., Seidel, G., Mertins, A.: Multiple feature extraction for early parkinson risk assessment based on transcranial sonography image. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 2277–2280 (2010)Google Scholar
  5. 5.
    Crane, K., Llamas, I., Tariq, S.: Real-time simulation and rendering of 3d fluids. In: Nguyen, H. (ed.) GPU Gems 3, ch. 30. Addison Wesley Professional, Reading (2007)Google Scholar
  6. 6.
    Engel, K., Toennies, K.D.: Segmentation of the midbrain in transcranial sonographies using a two-component deformable model. Annals of the BMVA (4), 1–12 (2009)Google Scholar
  7. 7.
    Fang, Q., Boas, D.: Tetrahedral mesh generation from volumetric binary and grayscale images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009, pp.1142–1145 (2009)Google Scholar
  8. 8.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3d medical image segmentation: A review. Medical Image Analysis 13(4), 543–563 (2009)CrossRefGoogle Scholar
  9. 9.
    Ivancevich, N., Dahl, J., Trahey, G., Smith, S.: Phase-aberration correction with a 3-d ultrasound scanner: feasibility study. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 53(8), 1432–1439 (2006)CrossRefGoogle Scholar
  10. 10.
    Kier, C., Cyrus, C., Seidel, G., Hofmann, U.G., Aach, T.: Segmenting the substantia nigra in ultrasound images for early diagnosis of parkinson’s disease. International Journal of Computer Assisted Radiology and Surgery 2(S1), 83–85 (2007)Google Scholar
  11. 11.
    Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Transactions on Image Processing 17(11), 2029–2039 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Michaeli, S., Oz, G., Sorce, D., Garwood, M., Ugurbil, K., Majestic, S.: Assessment of brain iron and neuronal integrity in patients with Parkinson’s disease using novel MRI contrasts. Movement Disorders: Official Journal of the Movement Disorder Society 22(3), 334–340 (2007)CrossRefGoogle Scholar
  13. 13.
    Shen, L., Farid, H., McPeek, M.A.: Modeling three-dimensional morphological structures using spherical harmonics. Evolution: International Journal of Organic Evolution 63(4), 1003–1016 (2009)CrossRefGoogle Scholar
  14. 14.
    Slabaugh, G., Unal, G.: Active polyhedron: surface evolution theory applied to deformable meshes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 84–91 (2005)Google Scholar
  15. 15.
    Vlaar, A., de Nijs, T., van Kroonenburgh, M., Mess, W., Winogrodzka, A., Tromp, S., Weber, W.: The predictive value of transcranial duplex sonography for the clinical diagnosis in undiagnosed parkinsonian syndromes: comparison with spect scans. BMC Neurology 8(1), 42 (2008)CrossRefGoogle Scholar
  16. 16.
    Walter, U., Dressler, D., Probst, T., Wolters, A., Abu-Mugheisib, M., Wittstock, M., Benecke, R.: Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic parkinson disease. Archives of Neurology 64(11), 1635–1640 (2007)CrossRefGoogle Scholar
  17. 17.
    Wein, W., Pache, F., Röper, B., Navab, N.: Backward-warping ultrasound reconstruction for improving diagnostic value and registration. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 750–757. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Seyed-Ahmad Ahmadi
    • 1
  • Maximilian Baust
    • 1
  • Athanasios Karamalis
    • 1
  • Annika Plate
    • 2
  • Kai Boetzel
    • 2
  • Tassilo Klein
    • 1
  • Nassir Navab
    • 1
  1. 1.Computer Aided Medical ProceduresTechnische Universität MünchenGermany
  2. 2.Department of NeurologyLudwig-Maximilians-University of MunichGermany

Personalised recommendations