Pose-Invariant 3D Proximal Femur Estimation through Bi-planar Image Segmentation with Hierarchical Higher-Order Graph-Based Priors

  • Chaohui Wang
  • Haithem Boussaid
  • Loic Simon
  • Jean-Yves Lazennec
  • Nikos Paragios
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)

Abstract

Low-dose CT-like imaging systems offer numerous perspectives in terms of clinical application, in particular for osteoarticular diseases. In this paper, we address the challenging problem of 3D femur modeling and estimation from bi-planar views. Our contributions are threefold. First, we propose a non-uniform hierarchical decomposition of the shape prior of increasing clinical-relevant precision which is achieved through curvature driven unsupervised clustering acting on the geodesic distances between vertices. Second, we introduce a graphical-model representation of the femur which can be learned from a small number of training examples and involves third-order and fourth-order priors, while being similarity and mirror-symmetry invariant and providing means of measuring regional and boundary supports in the bi-planar views. Last but not least, we adopt an efficient dual-decomposition optimization approach for efficient inference of the 3D femur configuration from bi-planar views. Promising results demonstrate the potential of our method.

Keywords

Femoral Head Gaussian Mixture Model Geodesic Distance Active Shape Model Statistical Shape Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their training and application. CVIU 61(1), 38–59 (1995)Google Scholar
  2. 2.
    Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through mrfs and efficient linear programming. Medical Image Analysis 12(6), 731–741 (2008)CrossRefGoogle Scholar
  3. 3.
    Gottschling, H., Roth, M., Schweikard, A., Burgkart, R.: Intraoperative, fluoroscopy-based planning for complex osteotomies of the proximal femur. Int. J. Med. Robotics Comput. Assist. Surg. 1, 67–73 (2005)CrossRefGoogle Scholar
  4. 4.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3d medical image segmentation: A review. Medical Image Analysis 13(4), 543–563 (2009)CrossRefGoogle Scholar
  5. 5.
    Kadoury, S., Cheriet, F., Laporte, C., Labelle, H.: A versatile 3d reconstruction system of the spine and pelvis for clinical assessment of spinal deformities. Med. Biol. Engineering and Computing 45(6), 591–602 (2007)CrossRefGoogle Scholar
  6. 6.
    Komodakis, N., Paragios, N., Tziritas, G.: MRF optimization via dual decomposition: Message-passing revisited. In: ICCV (2007)Google Scholar
  7. 7.
    Komodakis, N., Paragios, N., Tziritas, G.: Clustering via lp-based stabilities. In: NIPS (2009)Google Scholar
  8. 8.
    Kurazume, R., Nakamura, K., Okada, T., Sato, Y., Sugano, N., Koyama, T., Iwashita, Y., Hasegawa, T.: 3d reconstruction of a femoral shape using a parametric model and two 2d fluoroscopic images. CVIU 113(2), 202–211 (2009)Google Scholar
  9. 9.
    Laporte, S., Skalli, W., de Guise, J.A., Lavaste, F., Mitton, D.: A biplanar reconstruction method based on 2d and 3d contours: Application to the distal femur. Computer Methods in Biomechanics and Biomedical Engineering 6(1), 1–6 (2003)CrossRefGoogle Scholar
  10. 10.
    Mitton, D., Deschenes, S., Laporte, S., Godbout, B., Bertrand, S., de Guise, J.A., Skalli, W.: 3d reconstruction of the pelvis from bi-planar radiography. Computer Methods in Biomechanics and Biomedical Engineering 9(1), 1–5 (2006)CrossRefGoogle Scholar
  11. 11.
    Varshney, K.R., Paragios, N., Deux, J.F., Kulski, A., Raymond, R., Hernigou, P., Rahmouni, A.: Postarthroplasty examination using x-ray images. IEEE Trans. Med. Imaging 28(3), 469–474 (2009)CrossRefGoogle Scholar
  12. 12.
    Wang, C., Teboul, O., Michel, F., Essafi, S., Paragios, N.: 3d knowledge-based segmentation using pose-invariant higher-order graphs. In: Jiang, T., Navab, N., Pluim, J.P., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 189–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chaohui Wang
    • 1
    • 2
  • Haithem Boussaid
    • 1
    • 2
  • Loic Simon
    • 1
  • Jean-Yves Lazennec
    • 3
  • Nikos Paragios
    • 1
    • 2
  1. 1.Laboratoire MAS, Ecole Centrale de ParisFrance
  2. 2.Equipe GALEN, INRIA Saclay - Île de FranceOrsayFrance
  3. 3.Centre Hospitalier Universitaire Pitié SalpêtrièreParisFrance

Personalised recommendations