Anatomical Labeling of the Anterior Circulation of the Circle of Willis Using Maximum a Posteriori Classification

  • Hrvoje Bogunović
  • José María Pozo
  • Rubén Cárdenes
  • Alejandro F. Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)


Automated anatomical labeling of the arteries forming the Circle of Willis is of great interest as facilitates inter-subject comparison required to discover geometric risk factors for the development of vascular pathologies. In this paper, we present a method for anatomical labeling of vessels forming anterior part of the Circle of Willis by detecting the five main vessel bifurcations. The method is first trained on a set of pre-labeled examples, where it learns local bifurcation features as well as global variation in the anatomy of the extracted vascular trees. Then the labeling of the target vascular tree is formulated as maximum a posteriori solution where the classifications of individual bifurcations are regularized by the prior learned knowledge of the tree they span. The method was evaluated by cross-validation on 30 subjects, which showed the vascular trees were correctly anatomically labeled in 90% of cases. The proposed method can naturally handle anatomical variations and is shown to be suitable for labeling arterial segments of Circle of Willis.


Internal Carotid Artery Middle Cerebral Artery Maximal Clique Ophthalmic Artery Vascular Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brisman, J.L., Song, J.K., Newell, D.W.: Cerebral aneurysms. N. Engl. J. Med. 355(9), 928–939 (2006)CrossRefGoogle Scholar
  2. 2.
    Tschirren, J., McLennan, G., Palagyi, K., Hoffman, E.A., Sonka, M.: Matching and anatomical labeling of human airway tree. IEEE Trans. Med. Imag. 24(12), 1540–1547 (2005)CrossRefGoogle Scholar
  3. 3.
    Mori, K., Hasegawa, J., Suenaga, Y., Toriwaki, J.: Automated anatomical labeling of the bronchial branch and its application to the virtual bronchoscopy system. IEEE Trans. Med. Imag. 19(2), 103–114 (2000)CrossRefGoogle Scholar
  4. 4.
    Mori, K., Ota, S., Deguchi, D., Kitasaka, T., Suenaga, Y., Iwano, S., Hasegawa, Y., Takabatake, H., Mori, M., Natori, H.: Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 707–714. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Mori, K., Oda, M., Egusa, T., Jiang, Z., Kitasaka, T., Fujiwara, M., Misawa, K.: Automated nomenclature of upper abdominal arteries for displaying anatomical names on virtual laparoscopic images. In: Liao, H., Edwards, E., Pan, X., Fan, Y., Yang, G.Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 353–362. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bogunovic, H., Pozo, J.M., Cardenes, R., Frangi, A.F.: Automatic identification of internal carotid artery from 3DRA images. In: Proc. IEEE EMBC, pp. 5343–5346. IEEE Press, Los Alamitos (2010)Google Scholar
  7. 7.
    Bogunovic, H., Pozo, J.M., Villa-Uriol, M.C., Majoie, C.B.L.M., van den Berg, R., Gratama van Andel, H.A.F., Macho, J.M., Blasco, J., San Roman, L., Frangi, A.F.: Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: An evaluation study. Med. Phys. 38, 210–222 (2011)CrossRefGoogle Scholar
  8. 8.
    Cardenes, R., Bogunovic, H., Frangi, A.F.: Fast 3D centerline computation for tubular structures by front collapsing and fast marching. In: Proc. IEEE ICIP, pp. 4109–4112. IEEE Press, Los Alamitos (2010)Google Scholar
  9. 9.
    Antiga, L., Ene-Iordache, B., Remuzzi, A.: Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Trans. Med. Imag. 22(5), 674–684 (2003)CrossRefGoogle Scholar
  10. 10.
    Antiga, L., Steinman, D.A.: VMTK: the Vascular Modeling Toolkit (2011),
  11. 11.
    Antiga, L., Steinman, D.A.: Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imag. 23(6), 704–713 (2004)CrossRefGoogle Scholar
  12. 12.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2011),
  13. 13.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Comm. ACM 16(9), 575–577 (1973)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hrvoje Bogunović
    • 1
  • José María Pozo
    • 1
  • Rubén Cárdenes
    • 1
  • Alejandro F. Frangi
    • 1
  1. 1.Center for Computational Imaging & Simulation Technologies in Biomedicine(CISTIB) – Universitat Pompeu Fabra (UPF) and CIBER-BBNBarcelonaSpain

Personalised recommendations