ManiSMC: A New Method Using Manifold Modeling and Sequential Monte Carlo Sampler for Boosting Navigated Bronchoscopy

  • Xiongbiao Luo
  • Takayuki Kitasaka
  • Kensaku Mori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)


This paper presents a new bronchoscope motion tracking method that utilizes manifold modeling and sequential Monte Carlo (SMC) sampler to boost navigated bronchoscopy. Our strategy to estimate the bronchoscope motions comprises two main stages:(1) bronchoscopic scene identification and (2) SMC sampling. We extend a spatial local and global regressive mapping (LGRM) method to Spatial-LGRM to learn bronchoscopic video sequences and construct their manifolds. By these manifolds, we can classify bronchoscopic scenes to bronchial branches where a bronchoscope is located. Next, we employ a SMC sampler based on a selective image similarity measure to integrate estimates of stage (1) to refine positions and orientations of a bronchoscope. Our proposed method was validated on patient datasets. Experimental results demonstrate the effectiveness and robustness of our method for bronchoscopic navigation without an additional position sensor.


Training Image Sequential Monte Carlo Virtual Camera Airway Tree Manifold Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Deguchi, D., Mori, K., Feuerstein, M., Kitasaka, T., Maurer Jr., C.R., Suenaga, Y., Takabatake, H., Mori, M., Natori, H.: Selective image similarity measure for bronchoscope tracking based on image registration. MedIA 13(4), 621–633 (2009)Google Scholar
  2. 2.
    Soper, T.D., Haynor, D.R., Glenny, R.W., Seibel, E.J.: In vivo validation of a hybrid tracking system for navigation of an ultrathin bronchoscope within peripheral airways. IEEE TBME 57(3), 736–745 (2010)Google Scholar
  3. 3.
    Luo, X., Feuerstein, M., Sugiura, T., Kitasaka, T., Mori, K., Imaizumi, K., Hasegawa, Y.: Towards hybrid bronchoscope tracking under respiratory motion: evaluation on a dynamic motion phantom. In: Wong, K.H., Miga, M.I. (eds.) SPIE Medical Imaging 2010, California, USA, vol. 7625, p. 76251B (2010)Google Scholar
  4. 4.
    Yang, Y., Nie, F., Xiang, S., Zhuang, Y., Wang, W.: Local and global regressive mapping for manifold learning with out-of-sample extrapolation. In: Fox, M., Poole, D. (eds.) Proceedings of AAAI 2010, Atlanta, USA, pp. 649–654 (2010)Google Scholar
  5. 5.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(5), 1371–1396 (2003)zbMATHGoogle Scholar
  6. 6.
    Luo, X., Reichl, T., Feuerstein, M., Kitasaka, T., Mori, K.: Modified hybrid bronchoscope tracking based on sequential monte carlo sampler: Dynamic phantom validation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 409–421. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Atasoy, S., Mateus, D., Lallemand, J., Meining, A., Yang, G.Z., Navab, N.: Endoscopic video manifolds. In: Jiang, T., et al. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 437–445. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Oh, J., Hwang, S., Lee, J., Tavanapong, W., Wong, J., de Groen, P.C.: Informative frame classification for endoscopy video. MedIA 11(2), 110–127 (2007)Google Scholar
  9. 9.
    Bashar, M., Kitasaka, T., Suenaga, Y., Mekada, Y., Mori, K.: Automatic detection of informative frames from wireless capsule endoscopy images. MedIA 14(3), 449–470 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiongbiao Luo
    • 1
  • Takayuki Kitasaka
    • 2
  • Kensaku Mori
    • 3
    • 1
  1. 1.Graduate School of Information ScienceNagoya UniversityJapan
  2. 2.Faculty of Information ScienceAichi Institute of TechnologyJapan
  3. 3.Information and Communications HeadquartersNagoya UniversityJapan

Personalised recommendations