Simultaneous Segmentation and Grading of Hippocampus for Patient Classification with Alzheimer’s Disease

  • Pierrick Coupé
  • Simon F. Eskildsen
  • José V. Manjón
  • Vladimir Fonov
  • D. Louis Collins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6893)


Purpose: To propose an innovative approach to better detect Alzheimer’s Disease (AD) based on a finer detection of hippocampus (HC) atrophy patterns. Method: In this paper, we propose a new approach to simultaneously perform segmentation and grading of the HC to better capture the patterns of pathology occurring during AD. Based on a patch-based framework, the novel proposed grading measure estimates the similarity of the patch surrounding the voxel under study with all the patches present in different training populations. The training library used during our experiments was composed by 2 populations, 50 Cognitively Normal subjects (CN) and 50 patients with AD. Tests were completed in a leave-one-out framework. Results: First, the evaluation of HC segmentation accuracy yielded a Dice’s Kappa of 0.88 for CN and 0.84 for AD. Second, the proposed HC grading enables detection of AD with a success rate of 89%. Finally, a comparison of several biomarkers was investigated using a linear discriminant analysis. Conclusion: Using the volume and the grade of the HC at the same time resulted in an efficient patient classification with a success rate of 90%.


hippocampus segmentation hippocampus grading patient classification nonlocal means estimator Alzheimer’s disease 


  1. 1.
    Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M.: The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology 6(2), 67–77 (2010)CrossRefGoogle Scholar
  2. 2.
    Chupin, M., Hammers, A., Liu, R.S., Colliot, O., Burdett, J., Bardinet, E., Duncan, J.S., Garnero, L., Lemieux, L.: Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation. Neuroimage 46(3), 749–761 (2009)CrossRefGoogle Scholar
  3. 3.
    Collins, D.L., Pruessner, J.C.: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage 52(4), 1355–1366 (2010)CrossRefGoogle Scholar
  4. 4.
    Lotjonen, J.M., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage 49(3), 2352–2365 (2010)CrossRefGoogle Scholar
  5. 5.
    Coupe, P., Manjon, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 54(2), 940–954 (2011)CrossRefGoogle Scholar
  6. 6.
    Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. Neuroimage (2010)Google Scholar
  7. 7.
    Gerardin, E., Chetelat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.S., Niethammer, M., Dubois, B., Lehericy, S., Garnero, L., Eustache, F., Colliot, O.: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47(4), 1476–1486 (2009)CrossRefGoogle Scholar
  8. 8.
    Csernansky, J.G., Wang, L., Swank, J., Miller, J.P., Gado, M., McKeel, D., Miller, M.I., Morris, J.C.: Preclinical detection of Alzheimer’s disease: hippocampal shape and volume predict dementia onset in the elderly. Neuroimage 25(3), 783–792 (2005)CrossRefGoogle Scholar
  9. 9.
    Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008)CrossRefGoogle Scholar
  10. 10.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)CrossRefGoogle Scholar
  11. 11.
    Collins, D.L., Holmes, C.J., Peters, T.M., Evans, A.C.: Automatic 3-D model-based neuroanatomical segmentation. Human Brain Mapping 3(3), 190–208 (1995)CrossRefGoogle Scholar
  12. 12.
    Nyul, L.G., Udupa, J.K.: Standardizing the MR image intensity scales: making MR intensities have tissue specific meaning. Medical Imaging 2000: Image Display and Visualization 1(21), 496–504 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pierrick Coupé
    • 1
  • Simon F. Eskildsen
    • 1
  • José V. Manjón
    • 2
  • Vladimir Fonov
    • 1
  • D. Louis Collins
    • 1
  1. 1.McConnell Brain Imaging CentreMontreal Neurological Institute, McGill UniversityMontrealCanada
  2. 2.Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA)Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations