Fast Globally Optimal Segmentation of Cells in Fluorescence Microscopy Images

  • Jan-Philip Bergeest
  • Karl Rohr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

Keywords

Segmentation Result Active Contour Fluorescence Microscopy Image Energy Functional Intensity Inhomogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632–1648 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process 10(2), 266–277 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Coelho, L.P., Shariff, A., Murphy, R.F.: Nuclear segmentation in microscope cell images: a hand-segmented dataset and comparison of algorithms. In: ISBI 2009, pp. 518–521 (2009)Google Scholar
  4. 4.
    Dufour, A., Shinin, V., Tajbakhsh, S., Guillen-Aghion, N., Olivo-Marin, J.C., Zimmer, C.: Segmenting and Tracking Fluorescent Cells in Dynamic 3-D Microscopy With Coupled Active Surfaces. IEEE Trans. Image Process 14(9), 1396–1410 (2005)CrossRefGoogle Scholar
  5. 5.
    Dzyubachyk, O., van Cappellen, W.A., Essers, J., Niessen, W.J., Meijering, E.H.W.: Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy. IEEE Trans. Med. Imag. 29(3), 852–867 (2010)CrossRefGoogle Scholar
  6. 6.
    Goldstein, T., Bresson, X., Osher, S.: Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction. J. of Scientific Computing 45(1), 272–293 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Lin, G., Adiga, U., Olson, K., Guzowski, J.F., Barnes, C.A., Roysam, B.: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry A 56(1), 23–36 (2003)CrossRefGoogle Scholar
  8. 8.
    Mosaliganti, K., Gelas, A., Gouaillard, A., Noche, R., Obholzer, N., Megason, S.: Detection of Spatially Correlated Objects in 3D Images Using Appearance Models and Coupled Active Contours. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 641–648. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Nath, S.K., Palaniappan, K., Bunyak, F.: Cell segmentation using coupled level sets and graph-vertex coloring. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 101–108. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Padfield, D., Rittscher, J., Thomas, N., Roysam, B.: Spatio-temporal cell cycle phase analysis using level sets and fast marching methods. Med. Image Anal. 13(1), 143–155 (2009)CrossRefGoogle Scholar
  11. 11.
    Rousson, M., Deriche, R.: A Variational Framework for Active and Adaptative Segmentation of Vector Valued Images. In: Proc. Workshop Motion Video Comput., pp. 56–62. IEEE Computer Soc., Los Alamitos (2002)Google Scholar
  12. 12.
    Ortiz de Solorzano, C., Malladi, R., Lelievre, S., Lockett, S.J.: Segmentation of nuclei and cells using membrane related protein markers. J. Micr. 201(3), 404–415 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wählby, C., Lindblad, J., Vondrus, M., Bengtsson, E., Björkesten, L.: Algorithms for cytoplasm segmentation of fluorescence labelled cells. Analytical Cellular Pathology 24(2), 101–111 (2002)CrossRefGoogle Scholar
  14. 14.
    Yan, P., Zhou, X., Shah, M., Wong, S.T.C.: Automatic segmentation of high-throughput RNAi fluorescent cellular images. IEEE Trans. Inf. Techn. in Biomed 12(1), 109–117 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jan-Philip Bergeest
    • 1
  • Karl Rohr
    • 1
  1. 1.BIOQUANT, IPMB, and DKFZ Heidelberg Dept. Bioinformatics and Functional Genomics, Biomedical Computer Vision GroupUniversity of HeidelbergGermany

Personalised recommendations