Deformable Registration of High-Resolution and Cine MR Tongue Images

  • Jonghye Woo
  • Maureen Stone
  • Jerry L. Prince
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)


This work investigates a novel 3D multimodal deformable registration method to align high-resolution magnetic resonance imaging (MRI) with cine MRI of the tongue for better visual and motion analysis. Both modalities have different strengths to characterize and analyze the tongue structure or motion. Visual and motion analysis of combined anatomical and temporal information can synergistically improve the utility of each modality. An automated multimodal registration method is presented utilizing structural information computed from the 3D Harris operator to encode spatial and geometric cues into the computation of mutual information. The robustness and accuracy of the proposed method have been demonstrated using experiments on clinical datasets and yielded better performance compared to the conventional method and an average error comparable to the inter-observer variability.


Mutual Information Registration Method Nonrigid Registration Tongue Motion Target Registration Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stone, M., Davis, E., Douglas, A., NessAiver, M., Gullapalli, R., Levine, W., Lundberg, A.: Modeling the motion of the internal tongue from tagged cine-MRI images. The Journal of the Acoustical Society of America 109(6), 2974–2982 (2001)CrossRefGoogle Scholar
  2. 2.
    Narayanan, S., Nayak, K., Lee, S., Sethy, A., Byrd, D.: An approach to real-time magnetic resonance imaging for speech production. The Journal of the Acoustical Society of America 115(4), 1771–1776 (2004)CrossRefGoogle Scholar
  3. 3.
    Parthasarathy, V., Prince, J., Stone, M., Murano, E., NessAiver, M.: Measuring tongue motion from tagged cine-MRI using harmonic phase (HARP) processing. The Journal of the Acoustical Society of America 121(1)Google Scholar
  4. 4.
    Pluim, J., Maintz, J., Viergever, M.: Mutual-information-based registration of medical images: a survey. IEEE Trans on Medical Imaging 22(8), 986–1004 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Zhuang, X., Hawkes, D.J., Ourselin, S.: Unifying encoding of spatial information in mutual information for nonrigid registration. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 491–502. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 452–461. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Yi, Z., Soatto, S.: Nonrigid registration combining global and local statistics. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2200–2207 (2009)Google Scholar
  8. 8.
    Rueckert, D., Clarkson, M., Hill, D., Hawkes, D.: Non-rigid registration using higher-order mutual information. In: Proceedings of SPIE, vol. 3979, p. 438 (2000)Google Scholar
  9. 9.
    Russakoff, D.B., Tomasi, C., Rohlfing, T., Maurer Jr., C.R.: Image similarity using mutual information of regions. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 596–607. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Loeckx, D., Slagmolen, P., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid image registration using conditional mutual information. IEEE Trans on Medical Imaging 29(1), 19–29 (2009)CrossRefGoogle Scholar
  11. 11.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, Manchester, UK, pp. 147–151 (1988)Google Scholar
  12. 12.
    Donoser, M., Urschler, M., Hirzer, M., Bischof, H.: Saliency driven total variation segmentation. In: CVPR, pp. 817–824 (2010)Google Scholar
  13. 13.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast mr images. IEEE Trans. Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  14. 14.
    Spall, J.: An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Technical Digest 19(4), 482–492 (1998)Google Scholar
  15. 15.
    Fitzpatrick, J.M., West, J.B., Maurer, C.R.: Predicting error in rigid-body point-based registration. IEEE Trans. Medical Imaging 17, 694–702 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jonghye Woo
    • 1
    • 2
  • Maureen Stone
    • 1
  • Jerry L. Prince
    • 2
  1. 1.Department of Neural and Pain ScienceUniversity of Maryland Dental SchoolBaltimoreUSA
  2. 2.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations