Motion Correction and Parameter Estimation in dceMRI Sequences: Application to Colorectal Cancer

  • Manav Bhushan
  • Julia A. Schnabel
  • Laurent Risser
  • Mattias P. Heinrich
  • J. Michael Brady
  • Mark Jenkinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

We present a novel Bayesian framework for non-rigid motion correction and pharmacokinetic parameter estimation in dceMRI sequences which incorporates a physiological image formation model into the similarity measure used for motion correction. The similarity measure is based on the maximization of the joint posterior probability of the transformations which need to be applied to each image in the dataset to bring all images into alignment, and the physiological parameters which best explain the data. The deformation framework used to deform each image is based on the diffeomorphic logDemons algorithm. We then use this method to co-register images from simulated and real dceMRI data-sets and show that the method leads to an improvement in the estimation of physiological parameters as well as improved alignment of the images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armitage, P., Behrenbruch, C., Brady, M., Moore, N.: Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast. Medical Image Analysis 9(4), 315–329 (2005)CrossRefGoogle Scholar
  2. 2.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26 (2008)CrossRefGoogle Scholar
  3. 3.
    Buonaccorsi, G.A., Roberts, C., Cheung, S., Watson, Y., Davies, K., Jackson, A., Jayson, G.C., Parker, G.J.M.: Tracer kinetic model-driven registration for dynamic contrast enhanced MRI time series. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 91–98. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Hayton, P., Brady, M., Tarassenko, L., Moore, N.: Analysis of dynamic MR breast images using a model of contrast enhancement. Medical Image Analysis 1(3), 207–224 (1997)CrossRefGoogle Scholar
  5. 5.
    Karsa, L., Lignini, T.A., Patnick, J., Lambert, R., Sauvaget, C.: The dimensions of the CRC problem. Best Pract. Res. Cl. Ga. 24(4), 381–396 (2010)CrossRefGoogle Scholar
  6. 6.
    Roche, A., Malandain, G., Ayache, N.: Unifying maximum likelihood approaches in medical image registration. Int. J. Imag. Syst. Tech. 11(1), 71–80 (2000)CrossRefGoogle Scholar
  7. 7.
    Schmid, V.J., Whitcher, B., Padhani, A.R., Taylor, N.J., Yang, G.Z.: A Bayesian hierarchical model for the analysis of a longitudinal dynamic contrast-enhanced MRI oncology study. Magn. Reson. Med. 61(1), 163–174 (2009)CrossRefGoogle Scholar
  8. 8.
    Tofts, P.S., Kermode, A.G.: Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging 1. Fundamental Concepts. MR in Medicine 17(2), 357–367 (1991)Google Scholar
  9. 9.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: A demons-based approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Weinmann, H.J., Brasch, R.C., Press, W.R., Wesbey, G.E.: Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR 142(3), 619 (1984)CrossRefGoogle Scholar
  11. 11.
    Zahra, M.A., Hollingsworth, K.G., Sala, E., Lomas, D.J., Tan, L.T.: Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. The Lancet Oncology 8(1), 63–74 (2007)CrossRefGoogle Scholar
  12. 12.
    Zöllner, F.G., Sance, R., Rogelj, P., Ledesma-Carbayo, M.J., Rørvik, J., Santos, A., Lundervold, A.: Assessment of 3D dceMRI of the kidneys using non-rigid image registration and segmentation of voxel time courses. Comput. Med. Imaging Graph 33(3), 171–181 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manav Bhushan
    • 1
    • 2
  • Julia A. Schnabel
    • 1
  • Laurent Risser
    • 1
  • Mattias P. Heinrich
    • 1
    • 2
  • J. Michael Brady
    • 3
  • Mark Jenkinson
    • 2
  1. 1.Institute of Biomedical EngineeringOxford UniversityUK
  2. 2.Centre for Functional MRI of the BrainOxford UniversityUK
  3. 3.Department of Radiation Oncology and BiologyOxford UniversityUK

Personalised recommendations