Advertisement

Steerable Intravitreal Inserts for Drug Delivery: In Vitro and Ex Vivo Mobility Experiments

  • Christos Bergeles
  • Michael P. Kummer
  • Bradley E. Kratochvil
  • Carsten Framme
  • Bradley J. Nelson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

The progress of wet age-related macular degeneration can now be controlled by intravitreal drug injection. This approach requires repeated injections, which could be avoided by delivering the drug to the retina. Intraocular implants are a promising solution for drug delivery near the retina. Currently, their accurate placement is challenging, and they can only be removed after a vitrectomy. In this paper, we introduce an approach for minimally invasive retinal drug delivery using magnetic intraocular inserts. We briefly discuss the electromagnetic-control system for magnetic implants and then focus on evaluating their ability to move in the vitreous humor. The mobility of magnetic intraocular implants is estimated in vitro with synthesized vitreous humors, and ex vivo with experiments on cadaver porcine eyes. Preliminary results show that with such magnetic implants a vitrectomy can be avoided.

Keywords

Hyaluronic Acid Vitreous Humor Drug Reservoir Electromagnetic Control Intravitreal Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Congdon, N., O’Colmain, B., Klaver, C.C., Klein, R., Munoz, B., Friedman, D.S., Kempen, J., Taylor, H.R., Mitchell, P.: Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmology 122(4), 477–485 (2004)CrossRefGoogle Scholar
  2. 2.
    Nowak, J.Z.: Age-related macular degeneration: pathogenesis and therapy. Pharmacological Reports 58(3), 353–363 (2006)Google Scholar
  3. 3.
    Lee, S.S., Robinson, M.R.: Novel drug delivery systems for retinal diseases. Ophthalmic Research 41(3), 124–135 (2009)CrossRefGoogle Scholar
  4. 4.
    Danckwerts, M.P., Fassihi, A.: Implantable controlled release drug delivery systems. Drug Development and Industrial Pharmacy 17(11), 1465–1502 (1991)CrossRefGoogle Scholar
  5. 5.
    Yasukawa, T., Ogura, Y., Tabata, Y., Kimura, H., Wiedemann, P., Honda, Y.: Drug delivery systems for vitreoretinal diseases. Progress in Retinal and Eye Research 23(3), 253–281 (2004)CrossRefGoogle Scholar
  6. 6.
    Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering 12, 55–85 (2010)CrossRefGoogle Scholar
  7. 7.
    Yeşin, K.B., Vollmers, K., Nelson, B.J.: Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Robotics Research 25(5-6), 527–536 (2006)CrossRefGoogle Scholar
  8. 8.
    Ishiyama, K., Sendoh, M., Yamazaki, A., Arai, K.I.: Swimming micro-machine driven by magnetic torque. Sensor and Actuators A: Physical 91(1–2), 141–144 (2001)CrossRefGoogle Scholar
  9. 9.
    Sivaraman, K.M., Bayrakceken, K., Ergeneman, O., Pane, S., Lühmann, T., Hall, H., Nelson, B.J.: Tailoring the drug loading capacity of polypyrrole films for use in intraocular biomicrorobots. In: IEEE Int. Conf. Engineering in Medicine and Biology, pp. 4359–4362 (2010)Google Scholar
  10. 10.
    Choonara, Y.E., Pillay, V., Danckwerts, M.P., Carmichael, T.R., Du Toit, L.C.: A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J. Pharmaceutical Sciences 99(5), 2219–2239 (2010)CrossRefGoogle Scholar
  11. 11.
    Kummer, M.P., Abbott, J.J., Kratochvil, B.E., Borer, R., Sengul, A., Nelson, B.J.: OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robotics 26(6), 1006–1017 (2010)CrossRefGoogle Scholar
  12. 12.
    Gupta, P.K., Jensen, P.S., de Juan Jr., E.: Surgical forces and tactile perception during retinal microsurgery. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1218–1225. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Kummer, M.P., Abbott, J.J., Dinser, S., Nelson, B.J.: Artificial vitreous humor for in vitro experiments. In: IEEE Int. Conf. Engineering in Medicine and Biology, pp. 6406–6409 (2007)Google Scholar
  14. 14.
    Nickerson, C.S.: Engineering the mechanical properties of ocular tissues. PhD thesis, California Institute of Technology (2005)Google Scholar
  15. 15.
    Los, L.I., Van der Worp, R.J., Van Luyn, M.J.A., Hooymans, J.M.M.: Age-related liquefaction of the human vitreous body: LM and TEM evaluation of the role of proteoglycans and collagen. Investigative Ophthalmology and Visual Science 44(7), 2828–2833 (2003)CrossRefGoogle Scholar
  16. 16.
    Lee, B., Litt, M., Buchsbaum, G.: Rheology of the vitreous body: Part 2. viscoelasticity of bovine and porcine vitreous. Biorheology 31(4), 327–338 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christos Bergeles
    • 1
  • Michael P. Kummer
    • 1
  • Bradley E. Kratochvil
    • 1
  • Carsten Framme
    • 2
  • Bradley J. Nelson
    • 1
  1. 1.Institute of Robotics and Intelligent SystemsETH ZurichZurichSwitzerland
  2. 2.InselspitalUniversitätspital BernBernSwitzerland

Personalised recommendations