Advertisement

Virtual Coiling of Intracranial Aneurysms Based on Dynamic Path Planning

  • Hernán G. Morales
  • Ignacio Larrabide
  • Minsuok Kim
  • Maria-Cruz Villa-Uriol
  • Juan M. Macho
  • Jordi Blasco
  • Luis San Roman
  • Alejandro F. Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

Coiling is possibly the most widespread endovascular treatment for intracranial aneurysms. It consists in the placement of metal wires inside the aneurysm to promote blood coagulation. This work presents a virtual coiling technique for pre-interventional planning and post-operative assessment of coil embolization procedure of aneurysms. The technique uses a dynamic path planning algorithm to mimic coil insertion inside a 3D aneurysm model, which allows to obtain a plausible distribution of coils within a patient-specific anatomy. The technique was tested on two idealized geometries: an sphere and a hexahedron. Subsequently, the proposed technique was applied in 10 realistic aneurysm geometries to show its reliability in anatomical models. The results of the technique was compared to digital substraction angiography images of two aneurysms.

Keywords

Digital Subtraction Angiography Intracranial Aneurysm Candidate Location Aneurysm Model Idealize Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Li, M.H., Gao, B.L., Fang, C., Gu, B.X., Cheng, Y.S., Wang, W., Scotti, G.: Angiographic follow-up of cerebral aneurysms treated with Guglielmi detachable coils: an analysis of 162 cases with 173 aneurysms. AJNR Am. J. Neuroradiol. 27(5), 1107–1112 (2006)Google Scholar
  2. 2.
    Wootton, D.M., Ku, D.N.: Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis. Annu. Rev. Biomed. Eng. 1, 299–329 (2003)CrossRefGoogle Scholar
  3. 3.
    Larrabide, I., Kim, M., Augsburger, L., Villa-Uriol, M.C., Rufenacht, D., Frangi, A.F.: Fast virtual deployment of self-expandable stents: Method and in vitro evaluation for intracranial aneurysmal stenting. Med. Image Anal. (2010) (in press)Google Scholar
  4. 4.
    Dequidt, J., Marchal, M., Duriez, C., Kerien, E., Cotin, S.: Interactive simulation of embolization coils: Modeling and experimental validation. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 695–702. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bogunovic, H., Pozo, J.M., Villa-Uriol, M.C., Majoie, C.B., van den Berg, R., van Andel, H.A., Macho, J.M., Blasco, J., Roman, L.S., Frangi, A.F.: Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: an evaluation study. Med. Phys. 38(1), 210–222 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hernán G. Morales
    • 1
  • Ignacio Larrabide
    • 1
  • Minsuok Kim
    • 1
  • Maria-Cruz Villa-Uriol
    • 1
  • Juan M. Macho
    • 2
  • Jordi Blasco
    • 2
  • Luis San Roman
    • 2
  • Alejandro F. Frangi
    • 1
  1. 1.Center for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB)Universitat Pompeu Fabra and CIBER-BBNBarcelonaSpain
  2. 2.Department of RadiologyHospital ClinicBarcelonaSpain

Personalised recommendations