Advertisement

Towards Intra-operative Prostate Brachytherapy Dosimetry Based on Partial Seed Localization in Ultrasound and Registration to C-arm Fluoroscopy

  • Mehdi Moradi
  • S. Sara Mahdavi
  • Sanchit Deshmukh
  • Julio Lobo
  • Ehsan Dehghan
  • Gabor Fichtinger
  • William J. Morris
  • Septimiu E. Salcudean
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

Intraoperative dosimetry during prostate brachytherapy is a long standing clinical problem. We propose a novel framework to address this problem by reliable detection of a subset of seeds from 3D transrectal ultrasound and registration to fluoroscopy. Seed detection in ultrasound is achieved through template matching in the RF ultrasound domain followed by thresholding and spatial filtering based on the fixed distance between stranded seeds. This subset of seeds is registered to the complete reconstruction of the implant in C-arm fluoroscopy. We report results, validated with a leave-one-needle-out approach, both in a phantom (average post-registration seed distance of 2.5 mm) and in three clinical patient datasets (average error: 3.9 mm over 113 seeds).

Keywords

Template Match Iterative Close Point Registration Error Iterative Close Point Normalize Cross Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mamou, J., Ramachandran, S., Feleppa, E.J.: Angle-dependent ultrasonic detection and imaging of brachytherapy seeds using singular spectrum analysis. Journal of the Acoustical Society of America 123(4), 2148–2159 (2008)CrossRefGoogle Scholar
  2. 2.
    Jain, A.K., Zhou, Y., Mustufa, T., Burdette, E.C., Chirikjian, G.S., Fichtinger, G.: Matching and reconstruction of brachytherapy seeds using the hungarian algorithm (MARSHAL). In: SPIE Medical Imaging. SPIE, vol. 5744, pp. 810–821 (2005)Google Scholar
  3. 3.
    Fallavollita, P., Karim-Aghaloo, Z., Burdette, C.E., Song, D.Y., Abolmaesumi, P., Fichtinger, G.: Registration between ultrasound and fluoroscopy or CT in prostate brachytherapy. Med. Phys. 37(6), 2749–2760 (2010)CrossRefGoogle Scholar
  4. 4.
    French, D., Morris, J., Keyes, M., Salcudean, S.E.: Real-time dosimetry for prostate brachytherapy using TRUS and fluoroscopy. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 983–991. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Su, Y., Davis, B.J., Furutani, K.M., Herman, M.G., Robb, R.A.: Seed localization and trus-fluoroscopy fusion for intraoperative prostate brachytherapy dosimetry. Comput. Aided Surg. 12(1), 25–34 (2007)CrossRefGoogle Scholar
  6. 6.
    Todor, D.A., Zaider, M., Cohen, G.N., Worman, M.F., Zelefsky, M.J.: Intraoperative dynamic dosimetry for prostate implants. Physics in Medicine and Biology 48, 1153–1171 (2003)CrossRefGoogle Scholar
  7. 7.
    Dehghan, E., Lee, J., Moradi, M., Wen, X., Fichtinger, G., Salcudean, S.E.: Prostate brachytherapy seed reconstruction using C-arm rotation measurement and motion compensation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 283–290. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Zhang, M., Zaider, M., Worman, M., Cohen, G.: On the question of 3D seed reconstruction in prostate brachytherapy: the determination of x-ray source and film locations. Phys. Med. Biol. 49(19), N335–N345 (2004)CrossRefGoogle Scholar
  9. 9.
    Tutar, I.B., Gong, L., Narayanan, S., Pathak, S.D., Cho, P.S., Wallner, K., Kim, Y.: Seed-based transrectal ultrasound-fluoroscopy registration method for intraoperative dosimetry analysis of prostate brachytherapy. Med. Phys. 35(3), 840–848 (2008)CrossRefGoogle Scholar
  10. 10.
    Wen, X., Salcudean, S.E., Lawrence, P.D.: Detection of brachytherapy seeds using 3-D transrectal ultrasound. IEEE Trans. Biomed. Eng. 57(10), 2467–2477 (2010)CrossRefGoogle Scholar
  11. 11.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM 15, 11–15 (1972)CrossRefzbMATHGoogle Scholar
  12. 12.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mehdi Moradi
    • 1
  • S. Sara Mahdavi
    • 1
  • Sanchit Deshmukh
    • 2
  • Julio Lobo
    • 1
  • Ehsan Dehghan
    • 3
  • Gabor Fichtinger
    • 3
  • William J. Morris
    • 4
  • Septimiu E. Salcudean
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Indian Institute of TechnologyBombayIndia
  3. 3.School of ComputingQueen’s UniversityKingstonCanada
  4. 4.British Columbia Cancer AgencyCanada

Personalised recommendations