Automated Planning of Computer Assisted Mosaic Arthroplasty

  • Jiro Inoue
  • Manuela Kunz
  • Mark B. Hurtig
  • Stephen D. Waldman
  • A. James Stewart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

We describe and evaluate a computer algorithm that automatically develops a surgical plan for computer assisted mosaic arthroplasty, a technically demanding procedure in which a set of osteochondral plugs are transplanted from a non-load-bearing area of the joint to the site of a cartilage defect. We found that the algorithm produced plans that were at least as good as a human expert, had less variability, and took less time.

Keywords

Cartilage Defect Cartilage Surface Osteochondritis Dissecans Spline Surface Osteochondral Grafting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Halser, E., Herzog, W., Wu, J.Z., Müller, W., Wyss, U.: Articular cartilage biomechanics: theoretical models, material properties, and biosynthetic response. Crit. Rev. Biomed. Eng. 27(6), 415 (1999)Google Scholar
  2. 2.
    Yamashita, F.: The transplantation of an autogeneic osteochondral fragment for osteochondritis dissecans of the knee. Clin. Orthop. Relat. Res. (201), 43 (1985)Google Scholar
  3. 3.
    Hangody, L., Kish, G., Krpti, Z., Szerb, I., Udvarhelyi, I.: Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects: A preliminary report. Knee Surgery, Sports Traumatology, Arthroscopy 5(4), 262–267Google Scholar
  4. 4.
    Pearce, S., Hurtig, M., Clarnette, R., Kalra, M., Cowan, B., Miniaci, A.: An investigation of 2 techniques for optimizing joint surface congruency using multiple cylindrical osteochondral autografts. Arthroscopy: The Journal of Arthroscopic and Related Surgery 17(1), 50–55 (2001)CrossRefGoogle Scholar
  5. 5.
    Koh, J., Kowalski, A., Lautenschlager, E.: The effect of angled osteochondral grafting on contact pressure: A biomechanical study. American Journal of Sports Medicine 34(1), 116–119 (2006)CrossRefGoogle Scholar
  6. 6.
    Huang, F., Simonian, P., Norman, A., Clark, J.: Effects of small incongruities in a sheep model of osteochondral autografting. American Journal of Sports Medicine 32(8), 1842–1848 (2004)CrossRefGoogle Scholar
  7. 7.
    Kunz, M., Hurtig, M., Waldman, S., Devlin, S., Rudan, J., Bardana, D., Stewart, J.: Image-guided surgical techniques for cartilage repair - an animal trial. In: World Congress of the International Cartilage Repair Society (ICRS), p. 190 (2010)Google Scholar
  8. 8.
    Radermacher, K., Portheine, F., Anton, M., Zimolong, A., Kaspers, G., Rau, G., Staudte, H.W.: Computer assisted orthopaedic surgery with image based individual templates. Clin. Orthop. Relat. Res. (354), 28–38 (1998)Google Scholar
  9. 9.
    Kunz, M., Devlin, S., Rudan, J., Waldman, S., Stewart, J., Hurtig, M.: Computer-assisted planning for mosaic arthroplasty. Computer Assisted Radiology and Surgery, S102–S103 (2009)Google Scholar
  10. 10.
    Jakob, R., Franz, T., Gautier, E., Mainil-Varlet, P.: Autologous osteochondral grafting in the knee: indication, results, and reflections. Clinical Orthopaedics and Related Research 401, 170–184 (2002)CrossRefGoogle Scholar
  11. 11.
    Koulalis, D., Benedetto, P.D., Citak, M., Loughlin, P., Pearle, A., Kendoff, D.: Comparative study of navigated versus freehand osteochondral graft transplantation of the knee. American Journal of Sports Medicine 37(4), 803–807 (2009)CrossRefGoogle Scholar
  12. 12.
    Bale, R., Hoser, C., Rosenberger, R., Rieger, M., Benedetto, K., Fink, C.: Osteochondral lesions of the talus: Computer-assisted retrograde drilling - feasibility and accuracy in initial experiences. Radiology 218, 278 (2001)CrossRefGoogle Scholar
  13. 13.
    Hoser, C., Bichler, O., Bale, R., Rosenberger, R., Rieger, M., Kovacs, P., Lang, T., Fink, C.: A computer assisted surgical technique for retrograde autologous osteochondral grafting in talar osteochondritis dissecans (ocd): a cadaveric study. Knee Surgery, Sports Traumatology, Arthroscopy 12(1), 65–71 (2004)CrossRefGoogle Scholar
  14. 14.
    Marymount, J., Shute, G., Zhu, H., Varner, K., Paravic, V., Haddad, J., Noble, P.: Computerized matching of autologous femoral grafts for the treatment of medial talar osteochondral defects. Foot and Ankle Intl. 26(9), 708 (2005)CrossRefGoogle Scholar
  15. 15.
    Bartz, R., Kamaric, E., Noble, P., Lintner, D., Bocell, J.: Topographic matching of selected donor and recipient sites for osteochondral autografting of the articular surface of the femoral condyles. American Journal of Sports Medicine 29(2), 207–212 (2001)Google Scholar
  16. 16.
    Böttcher, P., Zeissler, M., Grevel, V., Oechtering, G.: Computer simulation of the distal aspect of the femur for assessment of donor core size and surface curvature for autologous osteochondral transplantation in the canine stifle joint. Veterinary Surgery 39(3), 371–379 (2010)CrossRefGoogle Scholar
  17. 17.
    Kunz, M., Devlin, S., Gong, R.H., Inoue, J., Waldman, S.D., Hurtig, M., Abolmaesumi, P., Stewart, J.: Prediction of the repair surface over cartilage defects: A comparison of three methods in a sheep model. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 75–82. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Haklar, U., Tuzuner, T., Uygur, I., Kocaoglu, B., Guven, O.: The effect of overlapping on the primary stability of osteochondral grafts in mosaicplasty. Knee Surgery, Sports Traumatology, Arthroscopy 16(7), 651–654 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jiro Inoue
    • 1
    • 3
  • Manuela Kunz
    • 1
    • 3
  • Mark B. Hurtig
    • 4
  • Stephen D. Waldman
    • 2
    • 3
  • A. James Stewart
    • 1
    • 3
  1. 1.School of ComputingQueen’s UniversityCanada
  2. 2.Department of Mechanical EngineeringQueen’s UniversityCanada
  3. 3.Human Mobility Research CentreKingston General HospitalCanada
  4. 4.Ontario Veterinary CollegeUniversity of GuelphCanada

Personalised recommendations