Model-Based Fusion of Multi-modal Volumetric Images: Application to Transcatheter Valve Procedures

  • Saša Grbić
  • Razvan Ionasec
  • Yang Wang
  • Tommaso Mansi
  • Bogdan Georgescu
  • Matthias John
  • Jan Boese
  • Yefeng Zheng
  • Nassir Navab
  • Dorin Comaniciu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

Minimal invasive procedures such as transcatheter valve interventions are substituting conventional surgical techniques. Thus, novel operating rooms have been designed to augment traditional surgical equipment with advanced imaging systems to guide the procedures. We propose a novel method to fuse pre-operative and intra-operative information by jointly estimating anatomical models from multiple image modalities. Thereby high-quality patient-specific models are integrated into the imaging environment of operating rooms to guide cardiac interventions. Robust and fast machine learning techniques are utilized to guide the estimation process. Our method integrates both the redundant and complementary multimodal information to achieve a comprehensive modeling and simultaneously reduce the estimation uncertainty. Experiments performed on 28 patients with pairs of multimodal volumetric data are used to demonstrate high quality intra-operative patient-specific modeling of the aortic valve with a precision of 1.09mm in TEE and 1.73mm in 3D C-arm CT. Within a processing time of 10 seconds we additionally obtain model sensitive mapping between the pre- and intra-operative images.

Keywords

Aortic Valve Transcatheter Aortic Valve Implantation Transcatheter Aortic Valve Replacement Statistical Shape Model Transcatheter Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Walther, T., Chu, M., Mohr, F.: Transcatheter aortic valve implantation: time to expand? Curr. Opin. Cardiology 23, 111–116 (2008)CrossRefGoogle Scholar
  2. 2.
    Vahanian, A., Alfieri, O., Al-Attar, N.: Transcatheter valve implantation for patients with aortic stenosis. Eur. J. Cardiothorac Surg. 34, 1–8 (2008)CrossRefGoogle Scholar
  3. 3.
    Frangi, A.F., Rueckert, D., Duncan, J.S.: Three-dimensional cardiovascular image analysis. IEEE Transaction on Medical Imaging 21(9), 1005–1010 (2002)CrossRefGoogle Scholar
  4. 4.
    Ionasec, R.I., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Higuera, F., Navab, N., Comaniciu, D.: Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Transaction on Medical Imaging 29(9), 1636–1651 (2010)CrossRefGoogle Scholar
  5. 5.
    Waechter, I., Kneser, R., Korosoglou, G., Peters, J., Bakker, N.H., Boomen, R.v.d., Weese, J.: Patient specific models for planning and guidance of minimally invasive aortic valve implantation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 526–533. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Conti, C.A., Stevanella, M., Maffessanti, F., Trunfio, S., Votta, E., Roghi, A., Parodi, O., Caiani, E.G., Redaell, A.: Mitral valve modelling in ischemic patients: Finite element analysis from cardiac magnetic resonance imaging. In: Computing in Cardiology, pp. 1059–1062 (2010)Google Scholar
  7. 7.
    Linte, C.A., Wierzbicki, M., Moore, J., Little, S.H., Guiraudon, G.M., Peters, T.M.: Towards subject-specific models of the dynamic heart for image-guided mitral valve surgery. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 94–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Wells, W.M., Viola, P., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Medical Image Analysis 1(1), 35–51 (1996)CrossRefGoogle Scholar
  9. 9.
    Lorenzo-Valdés, M., Sanchez-Ortiz, G.I., Mohiaddin, R.H., Rueckert, D.: Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 642–650. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Pohl, K.M., Fisher, J., Grimson, L., Kikinis, R., Wells, W.M.: A Bayesian model for joint segmentation and registration. NeuroImage 31(1), 228–239 (2006)CrossRefGoogle Scholar
  11. 11.
    Gao, Y., Sandhu, R., Fichtinger, G., Tannenbaum, A.: A Coupled Global Registration and Segmentation Framework With Application to Magnetic Resonance Prostate Imagery. IEEE Transaction on Medical Imaging 29(10), 1781–1794 (2010)Google Scholar
  12. 12.
    Bronstein, Michael, A.M., Science, C., Israel, T., Michel, F., Paragios, N., Galen, E., Ile-de france, I.S.: Data Fusion through Cross-modality Metric Learning using Similarity-Sensitive Hashing. In: CVPR 2010, pp. 3594–3601 (2010)Google Scholar
  13. 13.
    Zhou, S., Shao, J., Georgescu, B., Comaniciu, D.: Boostmotion: Boosting a discriminative similarity function for motion estimation. In: CVPR 2006, pp. 1761–1768 (2006)Google Scholar
  14. 14.
    Grbić, S., Ionasec, R., Vitanovski, D., Voigt, I., Wang, Y., Georgescu, B., Navab, N., Comaniciu, D.: Complete valvular heart apparatus model from 4D cardiac CT. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 218–226. Springer, Heidelberg (2010), http://www.ncbi.nlm.nih.gov/pubmed/20879234 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Saša Grbić
    • 1
    • 3
  • Razvan Ionasec
    • 1
  • Yang Wang
    • 1
  • Tommaso Mansi
    • 1
  • Bogdan Georgescu
    • 1
  • Matthias John
    • 2
  • Jan Boese
    • 2
  • Yefeng Zheng
    • 1
  • Nassir Navab
    • 3
  • Dorin Comaniciu
    • 1
  1. 1.Image Analytics and BioinformaticsSiemens Corporate ResearchPrincetonUSA
  2. 2.Healthcare SectorSiemens AGForchheimGermany
  3. 3.Computer Aided Medical ProceduresTU MunichGermany

Personalised recommendations