Advertisement

Augmented Virtuality for Arthroscopic Knee Surgery

  • John M. Li
  • Davide D. Bardana
  • A. James Stewart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6891)

Abstract

This paper describes a computer system to visualize the location and alignment of an arthroscope using augmented virtuality. A 3D computer model of the patient’s joint (from CT) is shown, along with a model of the tracked arthroscopic probe and the projection of the camera image onto the virtual joint. A user study, using plastic bones instead of live patients, was made to determine the effectiveness of this navigated display; the study showed that the navigated display improves target localization in novice residents.

Keywords

Navigation System Target Point User Study Camera Image Camera View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tonet, O., Megali, G., D’Attanasio, S., Dario, P., Carrozza, M.C., Marcacci, M., Martelli, S., La Palombara, P.F.: An augmented reality navigation system for computer assisted arthroscopic surgery of the knee. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 1158–1162. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Monahan, E., Shimada, K.: A study of user performance employing a computer-aided navigation system for arthroscopic hip surgery. International Journal of Computer Assisted Radiology and Surgery 2(3-4), 245–252 (2007)CrossRefGoogle Scholar
  3. 3.
    Heng, P.A., Cheng, C.Y., Wong, T.T., Xu, Y., Chui, Y.P., Chan, K.M., Tso, S.K.: A virtual-reality training system for knee arthroscopic surgery. IEEE Transactions on Information Technology in Biomedicine 8(2), 217–227 (2004)CrossRefGoogle Scholar
  4. 4.
    Bayona, S., Fernández-Arroyo, J.M., Martín, I., Bayona, P.: Assessment study of insight ARTHRO VR arthroscopy virtual training simulator: face, content, and construct validities. Journal of Robotic Surgery 2(3), 151–158 (2008)CrossRefGoogle Scholar
  5. 5.
    Paul, P., Fleig, O., Jannin, P.: Augmented virtuality based on stereoscopic reconstruction in multimodal image-guided neurosurgery: methods and performance evaluation. IEEE Transactions on Medical Imaging 24(11), 1500–1511 (2005)CrossRefGoogle Scholar
  6. 6.
    Dey, D., Gobbi, D.G., Slomka, P.J., Surry, K.J.M., Peters, T.M.: Automatic fusion of freehand endoscopic brain images to three-dimensional surfaces: creating stereoscopic panoramas. IEEE Transactions on Medical Imaging 21(1), 23–30 (2002)CrossRefGoogle Scholar
  7. 7.
    Liao, H., Tsuzuki, M., Mochizuki, T., Kobayashi, E., Chiba, T., Sakuma, I.: Fast image mapping of endoscopic image mosaics with three-dimensional ultrasound image for intrauterine fetal surgery. Minimally Invasive Therapy & Allied Technologies 18(6), 332–340 (2009)CrossRefGoogle Scholar
  8. 8.
    Nicolau, S.A., Goffin, L., Soler, L.: A Low Cost and Accurate Guidance System for Laparoscopic Surgery: Validation on an Abdominal Phantom. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 124–133. ACM, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • John M. Li
    • 1
  • Davide D. Bardana
    • 2
  • A. James Stewart
    • 1
    • 2
  1. 1.School of ComputingQueen’s UniversityCanada
  2. 2.Human Mobility Research CentreKingston General HospitalCanada

Personalised recommendations