Advertisement

Nonlinear Sawtooth Waves

  • S. N. Gurbatov
  • O. V. Rudenko
  • A. I. Saichev
Part of the Nonlinear Physical Science book series (NPS)

Abstract

This chapter discusses interactions of strongly distorted waves containing shock fronts. Such sawtooth-shaped perturbations are formed in the course of wave propagation through media where nonlinearity predominates over competitive factors like dispersion, diffraction and absorption. Specific character of nonlinear processes in the fields of sawtooth waves is particularly emphasized. We describe experimentally observed phenomena, as well as present-day applied trends.

Keywords

Nonlinear Wave Shock Front Inhomogeneous Medium Burger Equation Nonlinear Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Plenum, New York, 1977)zbMATHGoogle Scholar
  2. 2.
    V.A. Burov, V.A. Krasilnikov, Direct observation of the deformation of intense ultrasonic waves in liquids, Sov. Phys. Dokl. 3, 173–176 (1958)ADSGoogle Scholar
  3. 3.
    L.K. Zarembo, V.A. Krasil’nikov, Introduction to Nonlinear Acoustics (Nauka, Moscow, 1966). In RussianGoogle Scholar
  4. 4.
    L.K. Zarembo, V.A. Krasil’nikov, V.V. Shklovskaya-Kordi, On the absorption of ultrasonic waves of a finite amplitude in liquids, Sov. Phys. Dokl. 109(4), 731–734 (1956)Google Scholar
  5. 5.
    K.A. Naugolnykh. in High-Intensity Ultrasonic Fields, ed. by L.D. Rosenberg (Plenum, New-York, 1974)Google Scholar
  6. 6.
    R.T. Beyer, Nonlinear Acoustics, 2nd edn. (Acoustical Society of America, New York, 1997)Google Scholar
  7. 7.
    A.A. Karabutov, O.V Rudenko, O.A. Sapozhnikov, Theory of thermal self-focusing with allowance for the generation of shock waves and acoustic streaming, Sov. Phys. Acoust. 34, 371–374(1988)Google Scholar
  8. 8.
    A.A. Karabutov, O.V. Rudenko, O.A. Sapozhnikov, Thermal self-focusing of weak sock waves, Sov. Phys. Acoust. 35, 40–43 (1989)Google Scholar
  9. 9.
    O.V. Rudenko, M.M. Sagatov, O.A. Sapozhnikov, Thermal self-focusing of sawtooth waves, Sov. Phys. JETP 71, 449–557 (1990)Google Scholar
  10. 10.
    O.V. Rudenko, O.A. Sapozhnikov, Inertialess self-focusing of nondispcrsive waves with a broadband spectrum, Quantum Electron. 23, 896 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    O.V. Rudenko, O.A. Sapozhnikov, Wave beams in cubically nonlinear nondispersive media., JETP 79, 220–229 (1994)ADSGoogle Scholar
  12. 12.
    O.V. Rudenko, O.A. Sapozhnikov, Theoretical description of thermal self-focusing of saw-tooth sound waves. Moscow Univ. Phys. Bull. 43(6), 106–107 (1989)Google Scholar
  13. 13.
    O.V. Rudenko, in Advances in Nonlinear Acoustics, ed. by H. Hobæk (World Scientific, Singapore, 1993), pp. 3–6Google Scholar
  14. 14.
    A.G. Musatov, O.V. Rudenko, O.A. Sapozhnikov, Accounting for nonlinear refraclion and nonlinear absorption in focusing high-power pulses, Sov. Phys. Acoust. 38, 274–279 (1992)Google Scholar
  15. 15.
    A.G. Musatov, O.A. Sapozhnikov, Nonlinear effects in process of focusing of acoustic pulses with shock front, Acoust. Phys. 39, 266–269 (1993)ADSGoogle Scholar
  16. 16.
    O.V. Rudenko, Nonlinear sawtooth-shaped waves, Phys. Usp. 38, 965–989 (1995)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    O.V. Rudenko, Nonlinear methods in acoustic diagnostics, Russ. J. Nondestructive Testing 29(8), 583–588 (1993)Google Scholar
  18. 18.
    V.G. Andreev, V.Y. Veroman, G.A. Denisov, O.V. Rudenko, O.A. Sapozhnikov, Nonlinear acoustical aspects of extracorporeal lithotripsy, Sov. Phys. Acoust. 38(4). 325–328 (1992)Google Scholar
  19. 19.
    O.V. Rudenko, O.A. Sapozhnikov, Intense acoustic beams: self-action of discontinuous waves, focusing of pulses and extracorporeal lithotripsy, Moscow Univ. Phys. Bull. 46, 3–17 (1991)Google Scholar
  20. 20.
    O.V. Rudenko, Interactions of intense noise waves, Phys. Usp. 29, 620–641 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    O.V. Rudenko, A.K. Sukhorukova, A.P. Sukhorukov, Equations of high-frequency nonlinear acoustics of inhomogeneous media, Acoust. Phys. 40, 264–268 (1994)ADSGoogle Scholar
  22. 22.
    D.J. Maglieri, Overview of current knowledge and activity in sonic boom research, J. Acoust. Soc. Am. 92, 2328–2337 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    A.D. Pierce, in Advances in Nonlinear Acoustics, ed. by H. Hobæk (World Scientific, Singapore, 1993), pp. 7–20Google Scholar
  24. 24.
    S.A. Akhmanov, R.V. Khokhlov, Problems of Nonlinear Optics (VINITI, Moscow, 1964). In RussianGoogle Scholar
  25. 25.
    S.A. Akhmanov, B.A. Vysloukh, A.S. Chirkin, Optics of Femtosecond Laser Pulses (AIP, New York, 1992)Google Scholar
  26. 26.
    F.V. Bunkin, Y.A. Kravtsov, G.A. Lyakhov, Acoustic analogues of nonlinear-optics phenomena, Sov. Phys. Usp 29(7), 607–619 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    D.T. Blackstock, Connection between the fay and fubini solutions for plane sound waves of finite amplitude, J. Acoust. Soc. Am. 39, 1019–1026 (1966)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    G.A. Liakhov, O.V. Rudenko, The effect of parametric amplification of weak signals in non-linear acoustics, Sov. Acoust. Phys. 20(5), 738–744. (1974)Google Scholar
  29. 29.
    B.K. Novikov, O.V. Rudenko, Degenerate parametric amplification of sound, Sov. Phys. Acoust. 22(3), 258–259 (1976)Google Scholar
  30. 30.
    R. Landauer, Parametric amplification along nonlinear transmission lines, J. Appl. Phys. 31, 479–484 (1960)ADSCrossRefGoogle Scholar
  31. 31.
    O.A. Vasil’eva, A.A. Karabutov, E.A. Lapshin, O.V. Rudenko., Interaction of One-Dimensional Waves in Nondispersive Media (MGU, Moscow, 1983). In RussianGoogle Scholar
  32. 32.
    S.N. Gurbatov, A.N. Malakhov, On the possibility of using parametric interaction of waves to highlight the weak acoustic signals, Sov. Phys. Acoust. 25(1), 53–59 (1979)Google Scholar
  33. 33.
    V.G. Andreev, A.A. Karabutov, O.V. Rudenko, Experimental study of the propagation of nonlinear sound beams in free space, Sov. Phys. Acoust. 31, 252–255 (1985)Google Scholar
  34. 34.
    D.A. Webster, M.A. Theobald, D.T. Blackstock. in Proc. 9th Int. Congress on Acoust., vol. 2(32) (Madrid, 1977), vol. 2(32), p. 740Google Scholar
  35. 35.
    D.A. Webster, D.T. Blackstock, Finite-amplitude saturation of plane sound waves in air, J. Acoust. Soc. Am. 62, 518–523 (1977)ADSCrossRefGoogle Scholar
  36. 36.
    O.V. Rudenko, S.I. Soluyan, R.V. Khokhlov, Bounded quasiplane beams of periodic perturbations in a nonlinear medium,, Sov. Phys. Acoust. 19, 871–876 (1973)Google Scholar
  37. 37.
    L.A. Ostrovskii, V.E. Fridman, Directivity of high-intensity acoustic radiation, Sov. Phys. Acoust. 18, 478–182(1973)Google Scholar
  38. 38.
    N.S. Bakhvalov, Y.M. Zhilcikin, E.A. Zabolotskaya, Nonlinear Theory of Sound Beams (AIP, New York, 1987)Google Scholar
  39. 39.
    R.V. Khokhlov, Theory of shock radiowaves in nonlinear lines, Sov. Phys. — Radiotech. Electron, (new title: J. of Communications Technology and Electronics) 6(6). 917–925 (1961)Google Scholar
  40. 40.
    E.A. Zabolotskaia, R.V. Khokhlov, Quasiplanar waves in nonlinear acoustics of bounded beams, Sov. Acoust. Phys. 15(1), 40–46 (1969)Google Scholar
  41. 41.
    O.V. Rudenko, The 40th anniversary of the khokhlov-zabolotskaya equation, Acoust. Phys. 56(4), 457–466 (2010)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    V.P. Kuznetsov, Equations of nonlinear acoustics. Sov. Phys. Acoust. 16, 467–470 (1970)Google Scholar
  43. 43.
    B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl. 15(6), 539–542 (1970)ADSzbMATHGoogle Scholar
  44. 44.
    O.V. Rudenko, S.I. Soluyan, R.V. Khokhlov, Problems of the theory of nonlinear acoustics, Sov. Phys. Acoust. 20(3), 356–359 (1974)Google Scholar
  45. 45.
    V.G. Andreev, O.V. Rudenko, O.A. Sapozhnikov, VA. Khokhlova, Suppression of nonlinear damping of a sound wave in a medium which contains a resonant absorber with a finite line width. Moscow Univ. Physics Bulletin 40(3), 3–17 (1985)Google Scholar
  46. 46.
    M.B. Vinogradova, O.V. Rudenko, A.P. Sukhorukov, Theory of Waves, 2nd edn. (Nauka, Moscow, 1990). In RussianGoogle Scholar
  47. 47.
    S.I. Aanonsen, T. Barkve, J.N. T’jotta, S. T’jotta, Distortion and harmonic generation in the near-field of a finite amplitude sound beam. J. Acoust. Soc. Am. 75, 749–768 (1984)ADSzbMATHCrossRefGoogle Scholar
  48. 48.
    M.F. Hamilton, J.N. Tjotta, S. Tjotta, Nonlinear effects in the far-field of a directive sound source, J. Acoust. Soc. Am. 78, 202–216 (1985)ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    H. Hobaek, Parametric acoustic transmitting arrays — a survey of theories and experiment. Sci. Techn. Report 99 (1977)Google Scholar
  50. 50.
    B.K. Novikov, O.V. Rudenko, V.I. Timoshenko, Nonlinear Underwater Acoustics (AIP, New York, 1987)Google Scholar
  51. 51.
    O.V. Rudenko, S.I. Soluyan, R.V. Khokhlov, To the nonlinear theory of paraxial sound beams, Sov. Phys. Dokl. 225(5) (1975)Google Scholar
  52. 52.
    S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10. 609–636 (1968)ADSCrossRefGoogle Scholar
  53. 53.
    R. Courant, D. Hilbert, Methodes of Mathematical Physics (Interscience, New York, 1953)Google Scholar
  54. 54.
    N.S. Bakhvalov, Y.M. Zhileikin, H.A. Zabolotskaia, R.V. Khokholov, Nonlinear propagation of a sound beam in a nondissipative medium, Sov. Acoust. Phys. 22(4), 487–491 (1976)Google Scholar
  55. 55.
    M.F. Hamilton, V.A. Khokhlova, O.V. Rudenko, Analytical method for describing the paraxial region of finite amplitude sound beams, J. Acoust. Soc. Am. 96, 3321–3332 (1994)ADSCrossRefGoogle Scholar
  56. 56.
    Y.R. Lapidus, O.V. Rudenko, New approximations and findings of theory of nonlinear acoustic beams, Sov. Phys. Acoust. 30(6), 473–476 (1984)MathSciNetGoogle Scholar
  57. 57.
    Y.R. Lapidus, S.I. Soluyan, Evolution of nonlinear waves along the axis of a weakly diffracting and focused beams, Sov. Phys. Acoust 31, 615–619 (1985)MathSciNetGoogle Scholar
  58. 58.
    J.H. Ginsberg, Nonlinear king integral for arbitrary axisymmetric sound beams at finite amplitude, J. Acoust. Soc. Am. 76, 1201–1214 (1984)ADSzbMATHCrossRefGoogle Scholar
  59. 59.
    F.Y. Coulouvrat, An analytical approximation of strong nonlinear effects in bounded sound beams, J. Acoust. Soc. Am. 90, 1592–1600 (1991)ADSCrossRefGoogle Scholar
  60. 60.
    D.R. Bacon, A.C. Baker, Comparison of two theoretical models for predicting nonlinear propagation in medical ultrasonic fields, Phys. Med. Biol. 34, 1633–1643 (1989)CrossRefGoogle Scholar
  61. 61.
    A.C. Baker, K. Anastasiadis. V.F. Humphrey, The nonlinear pressure field of a planar circular piston: Theory and experiment, J. Acoust. Soc. Am. 84, 1483–1487 (1988)ADSCrossRefGoogle Scholar
  62. 62.
    L.D. Landau, K.M. Lifshilz, Fluid Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1987)zbMATHGoogle Scholar
  63. 63.
    C.C. Lin, E. Reissner, H.S. Tsien, On two-dimensional non steady motion of the slenderbody in a compressible fluid. J. Math. Phys. 27, 3–15 (1948)MathSciNetGoogle Scholar
  64. 64.
    A.A. Karabutov, O.V. Rudenko, The modified Khokhlov method for investigation of non-steady transonic flows of a compressed gas, Sov. Phys. Dokl. 24, 835–838 (1979)ADSGoogle Scholar
  65. 65.
    M.S. Cramer, A.R. Seebass, Focusing of weak shock waves at an arěte, J. Fluid Mech. 88, 209–222 (1978)ADSzbMATHCrossRefGoogle Scholar
  66. 66.
    M.D. Spektor, Stability of weak shock waves with a finite-width front, JETP Lett. 35, 221–223 (1982)ADSGoogle Scholar
  67. 67.
    A.G. Munin, V.E. Kvitka, Aviation Acoustics (Mashinostroenie, Moscow. 1973). In RussianGoogle Scholar
  68. 68.
    A.D. Pierce, D.J. Maglieri, Effects of atmospheric irregularities on sonic boom propagation, J. Acoust. Soc. Am. 51, 702–721 (1972)ADSCrossRefGoogle Scholar
  69. 69.
    V.E. Fridman, Ray theory of acoustic waves of finite amplitude. Dr. Sci. Thesis (1985). In RussianGoogle Scholar
  70. 70.
    K.A. Naugolnykh, L.A. Ostrovsky, Nonlinear Wave Processes in Acoustics (Cambridge University Press, 1998)Google Scholar
  71. 71.
    E.N. Pelinovskii, V.E. Fridman, Y.K. Engelbrecht, Nonlinear Evolution Equations (Valgus, Tallin, 1984). In RussianGoogle Scholar
  72. 72.
    G.. Whitham, Linear and Nonlinear Waves (Wiley Interscience, New York, 1999)zbMATHCrossRefGoogle Scholar
  73. 73.
    D.I. Blokhintsev, Acoustics of Nonhomogeneous Moving Medium. Tech. Memo. 1399. (National Advisory Committee for Aeronautics, Washington, 1956)Google Scholar
  74. 74.
    Y A. Kravtsov, Y.I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer. 1990)Google Scholar
  75. 75.
    V.E. Ostashcv, Sound Propagation in Moving Media (Nauka, Moscow, 1992). In RussianGoogle Scholar
  76. 76.
    K.E. Gubkin, Propagation of discontinuities in the sound waves, J. Appl. Math. Mech. 22(4), 561–564 (1958)MathSciNetCrossRefGoogle Scholar
  77. 77.
    O.S. Ryzhov, Attenuation of shock waves in inhomogeneous media, J. Appl. Mech. Techn. Phys. 2, 15–24(1961)Google Scholar
  78. 78.
    Y.L. Zhilin, in Trudy TsAGI (1973), 1489, pp. 3–24. In RussianGoogle Scholar
  79. 79.
    E. Reiso, J.N. Tjotta, S. Tjotta, in Frontiers of Nonlinear Acoustics, ed. by M.F. Hamilton, D.T. Blackstock (Elsevier, London, 1990), pp. 177–182Google Scholar
  80. 80.
    L.K. Zarembo, I.P. Chunchuzov, Sound beam in an inhomogeneous medium with varying sound speed. Sov. Phys. Acoust. 23, 78–79 (1977)Google Scholar
  81. 81.
    O.V. Rudenko, A.K. Sukhorukova, A.P. Sukhorukov, Two-dimensional nonlinear waves with discontinuities in stratified media, Acoust. Phys. 41, 251–255 (1995)ADSGoogle Scholar
  82. 82.
    A.G. Musatov, O.A. Sapozhnikov, Focusing of powerful acoustic pulses under different convergence angles of wave front, Acoust. Phys. 39, 166–169 (1993)ADSGoogle Scholar
  83. 83.
    K.A. Naugolnykh, S.I. Soluyan, R.V. Khokhlov, Spherical waves of finite amplitude in a viscous thermally conducting medium, Sov. Phys. Acoust. 9, 42–48 (1963)MathSciNetGoogle Scholar
  84. 84.
    A.M. Sutin, in Nonlinear Acoustics (Appl. Phys. Inst., Gorky, 1980), pp. 45–67. In RussianGoogle Scholar
  85. 85.
    L.A. Ostrovskii, A.M. Sutin, Focusing of acoustic waves of a finite amplitude, [Sov, Phys. Dokl. 20, 275–277 (1975)ADSGoogle Scholar
  86. 86.
    Y.Y. Borisov, N.M. Gynkina, Investigation of elliptic sound concentrators, Sov. Phys. Acoust. 19, 389–391 (1974)Google Scholar
  87. 87.
    C.W. Smith, R.T. Beyer, Ultrasonic radiation field of a focusing source at finite amplitudes, J. Acoust. Soc. Am. 46, 806–813 (1969)ADSCrossRefGoogle Scholar
  88. 88.
    L. Agarval, V.R. Singh, S.P. Sud, in Proc. 14th Int. Congress on Acoust. (Beijing, 1992), pp. 1–10Google Scholar
  89. 89.
    D. Cathignol, J.Y. Chapelon, in Advances in Nonlinear Acoustics, ed. by H. Hobaek (World Scientific, Singapore, 1993), pp. 21–35Google Scholar
  90. 90.
    C.C. Church, L.A. Crum, in Proc. 13th Int. Congress on Acoust. (Belgrade, 1989), pp. 205–208Google Scholar
  91. 91.
    M. Delius. in Frontiers of Nonlinear Acoustics, ed. by M.F. Hamilton, D.T. Blackstock (Elsevier, London. 1990). pp. 31–46Google Scholar
  92. 92.
    K. Takayama, in Proc. of 15th Int. Workshop Shock Wave Focusing (Sendai, 1989), pp. 217–226Google Scholar
  93. 93.
    O.V. Rudenko, V.Y. Veromann, G.A. Denisov, et al. Optoacoustic radiator for contactless destruction of calculi in the body of a biological object. Certificate of authorship No. 1673085. In RussianGoogle Scholar
  94. 94.
    G.A. Askar’yan, L.D. Klebanov, The focusing and cumulation of pholothermoacoustic shock pulses from a concave surface heated by a flash of laser light, Sov. J. Quantum Electron. 18, 1359–1360 (1988)ADSCrossRefGoogle Scholar
  95. 95.
    S.A. Akhmanov, V.M. Gordienko, A.A. Karabutov, A.B. Reshilov, O.V. Rudenko, V.I. Shmalgauzen, in Proc. 9th Ail-Union Acoustics Conference, 4 IV-6 (Acoustics Institute, Moscow. 1977), pp. 25–28. In RussianGoogle Scholar
  96. 96.
    A.I. Bozhkov, F.V. Bunkin, A.M. Galstyan, A.A. Kolomenskii, V.G. Mikhalevich, Laser excitation of sound in liquids, Bull. Acad Sci. USSR, Phys. Ser. 46(8), 168–174 (1982)Google Scholar
  97. 97.
    V.E. Gusev, A.A. Karabutov, Laser Optoacoustics (AIP, New York, 1993)Google Scholar
  98. 98.
    A.G. Musatov, O.V. Rudenko, O.A. Sapozhnikov, in Advances in Nonlinear Acoustics, ed. by H. Hobaek (World Scientific, Singapore, 1993). pp. 321–326Google Scholar
  99. 99.
    A.J. Coleman, J.E. Saunders, R.C. Preston, D.R. Bacon, Pressure waveforms generated by dornier extracorporeal shock wave lithotripier, Ultrasound in Medicine and Biology 13, 651–657(1987)CrossRefGoogle Scholar
  100. 100.
    A.J. Coleman, J. E.Saunders, A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. Ultrasound in Medicine and Biology 15, 213–227 (1989)CrossRefGoogle Scholar
  101. 101.
    M. Muller, in Proc. 13th Int. Congress on Acoust., vol. 1 (Belgrade, 1989), vol. 1, pp. 259–262Google Scholar
  102. 102.
    O.A. Sapozhnikov, Focusing of high-intensity acoustic pulses, Sov. Phys. Acoust. 37, 395–404 (1991)Google Scholar
  103. 103.
    Y.M. Zhileikin, Y.I. Osipik, in Modern Problems of Mathematical Modeling (MGU, Moscow, 1984). pp. 363–366. In RussianGoogle Scholar
  104. 104.
    Y.M. Zhileikin, V. Rudenko, Nonlinearly diffractive transformation of acoustic signals, Sov. Phys. Acoust. 27(3), 200–203 (1981)Google Scholar
  105. 105.
    O.V. Rudenko, Feasibility of generation of high-power hypersound with the aid of laser radiation, JETP Lett. 20, 203–206 (1974)ADSGoogle Scholar
  106. 106.
    A.A. Karabutov, E.A. Lapshin, O.V. Rudenko, Interaction between light waves and sound under acoustic nonlinearity conditions, Sov. Phys. JETP 44, 58–68 (1976)ADSGoogle Scholar
  107. 107.
    O.V. Rudenko, Artificial nonlinear media with a resonant absorber, Sov. Phys. Acoust. 29, 234–237 (1983)Google Scholar
  108. 108.
    V.G. Andreev, O.V. Rudenko, inProc. 10th All-Union Acoustics Conference, Sect. B (Acoustics Institute, Moscow, 1983), p. 24. In RussianGoogle Scholar
  109. 109.
    V.G. Andreev, V.G. Gusev, A.A. Karabutov, O.V. Rudenko, O.A. Sapozhnikov, Enhancement of the q-factor of a nonlinear acoustic resonator by means of a selectively absorbing mirror, Sov. Phys. Acoust. 31, 162–163 (1985)Google Scholar
  110. 110.
    O.V. Rudenko, S.N. Gurbatov, C.M. Hedberg, Nonlinear Acoustics through Problems and Examples (Trafford, 2010)Google Scholar
  111. 111.
    V.E. Zakharov, R.Z. Sagdeev, Speclrum of acouslic turbulence, Sov. Phys. Dokl. 15, 439–442 (1970)ADSzbMATHGoogle Scholar
  112. 112.
    B.B. Kadomtsev, V.I. Petviashvili, Acoustic turbulence. Sov. Phys. Dokl. 18, 115–117 (1973)ADSGoogle Scholar
  113. 113.
    K.A. Naugolnykh, S.A. Rybak, Spectrum of sonic turbulence, Sov. Phys. JETP 41, 39–43 (1975)ADSGoogle Scholar
  114. 114.
    O.V. Rudenko, V.A. Khokhlova, Kinetic approach to the description of one-dimensional acoustic turbulence. Sov. Phys. Acoust. 34, 289–293 (1988)Google Scholar
  115. 115.
    O.V. Rudenko, V.A. Khokhlova, Kinetics of one-dimensional sawtooth waves, Sov. Phys. Acoust. 37, 90–93 (1991)Google Scholar
  116. 116.
    S.N. Gurbatov, A.I. Saichev, Degeneration of one-dimensional acouslic turbulence, Sov. Phys. JETP 53, 347–350 (1981)Google Scholar
  117. 117.
    S.N. Gurbatov, A.N. Malakhov, A.I. Saichev, Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles. (Manchester University Press, 1991)Google Scholar
  118. 118.
    E.A. Lapshin, O.A. Vasileva, et al. Application package NACSI (1–1.2: Plane, converging and diverging waves in dissipative and relaxing media; 2.1-2: diverging waves in dissipative and relaxing media: 2.1-4: High-intense acoustic beams in nonlinear media; etc.). Software package (1992)Google Scholar
  119. 119.
    V.A. Khokhlova, O.A. Sapozhnikov, Modification of the spectral method for describing non-linear acoustic waves containing shocks, J. Acoust. Soc. Am. 96, 3321–3326 (1994)ADSCrossRefGoogle Scholar
  120. 120.
    S.N. Gurbatov, A.I. Saichev, I. Yakushkin, Nonlinear waves and one-dimensional turbulence in nondispersive media, Sov. Phys. Usp. 26, 857–864 (1983)ADSCrossRefGoogle Scholar
  121. 121.
    VA. Burov, V.A. Krasilnikov, E.Y. Tagunov, Experimental investigation of collinear interaction of a weak ultrasonic signal with intense low-frequency perturbations in water, Moscow Univ. Phys. Bull. Sen 3 Phys. Astron. 33(4), 60–65 (1978)Google Scholar
  122. 122.
    M.B. Moffett, W.L. Konrad, L.K Carlton, Experimental demonstration of the absorption of sound by sound in water, J. Acoust. Soc. Am. 63, 1048–1051 (1978)ADSCrossRefGoogle Scholar
  123. 123.
    K.I. Volyak, Nonlinear Waves in the Ocean. Selected Works (Nauka, Moscow, 2002). In RussianGoogle Scholar
  124. 124.
    K.I. Volyak, A.S. Gorshkov, O.V. Rudenko, On the back-traveling wave appearance in homogeneous nonlinear media, Moscow Univ. Phys. Bull. 16(1), 32–36 (1975)Google Scholar
  125. 125.
    S.N. Makarov, Self-reflection in nonlinear acoustics, theoretical ground and possible applications, Acustica 80. 1–13 (1994)zbMATHGoogle Scholar
  126. 126.
    C.L. Morfey, in Advances in Nonlinear Acoustics, ed. by H. Hobæk (World Scientific, Singapore. 1993), pp. 167–172Google Scholar
  127. 127.
    P.J. Westervelt, Nonscattering of sound by sound resulting from a head-on collision of two plane-wave pulses, J. Acoust. Soc. Am. 96, 3320 (1994)ADSGoogle Scholar
  128. 128.
    V.V. Kaner, O.V. Rudenko, R.V. Khokhlov, Theory of nonlinear oscillations in acoustic resonators, Sov. Phys. Acoust. 23, 432–437 (1977)Google Scholar
  129. 129.
    V.V. Kaner, O.V. Rudenko, Propagation of waves of finite amplitude in acoustic waveguides, Mose. Univ. Phys. Bulletin 33, 63–70 (1978)Google Scholar
  130. 130.
    A.H. Nayfeh, J.E. Kaiser, D.P. Telionis, Acoustics of aircraft engine-duct systems, AIAA J. 13, 130–146 (1975)ADSzbMATHCrossRefGoogle Scholar
  131. 131.
    M.F. Hamilton, J.A. Ten Gate, Finite amplitude sound near cutoff in higher-order modes of a rectangular duct, J. Acoust. Soc. Am. 84, 327–334 (1988)ADSCrossRefGoogle Scholar
  132. 132.
    D.A. Webster, D.T. Blackstock, Collinear interaction of noise with a finite-amplitude tone. J. Acoust. Soc. Am. 63, 687–691 (1978)ADSCrossRefGoogle Scholar
  133. 133.
    Y.M. Zhileikin, T.M. Zhuravleva, O.V. Rudenko, Nonlinear phenomena under propagation of high-frequency sound waves in tubes, Sov. Phys. Acoust. 26(1), 32–35 (1980)Google Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. N. Gurbatov
    • 1
  • O. V. Rudenko
    • 2
  • A. I. Saichev
    • 3
  1. 1.Radiophysics DepartmentNizhny Novgorod State UniversityNizhny NovgorodRussia
  2. 2.Physics DepartmentMoscow State UniversityMoscowRussia
  3. 3.Radiophysics DepartmentNizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations