Evolution of a Noise Field Within the Framework of the Burgers Equation

  • S. N. Gurbatov
  • O. V. Rudenko
  • A. I. Saichev
Part of the Nonlinear Physical Science book series (NPS)


This chapter gives a brief review of evolution of random fields satisfying the Burgers equation. Often such random fields are called the Burgers turbulence, or even Burgulence, and also, bearing in mind applications to evolution of intense acoustic noise, acoustic turbulence. More details on probabilistic and spectral-correlational properties of the Burgers turbulence are contained in [1–16] and references therein.


Burger Equation Integral Scale Initial Spectrum Riemann Equation Small Wavenumbers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Avellaneda, W. E., Statistical properties of shocks in Burgers turbulence, Comm. Math. Phys. 172, 13–38 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    J. Bec, K. Khanin, Burgers turbulence, Physics Reports. 447, 1–66 (2007)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    L. Frachebourg, P.A. Martin, Exact statistical properties of the Burgers equation, J. Fluid Mech. 417, 323–349 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    S.N. Gurbatov, Universality classes for self-similarity of noiseless multidimensional Burgers turbulence and interface growth, Phys. Rev. E. 61, 2595–2604 (2000)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    S.N. Gurbatov, I.Y. Demin, A.I. Saichev, Establishment of self-similar regimes of nonlinear random waves in dissipative media, Sov. Phys. JETP 60, 284–292 (1984)Google Scholar
  6. 6.
    S.N. Gurbatov, I.Y. Dem in, A.I. Saichev, On properties of the Burgers turbulence at the stage of shock-front interaction, Izv. Vyssh. Uchebn. Zaved. Radiofiz. [Radiophys. Quantum Electron.] 27, 1079–1081 (1984). In RussianGoogle Scholar
  7. 7.
    S.N. Gurbatov, A.I. Saichev, Asymptotic properties of one-dimensional acoustic turbulence, Sov. Phys. Dokl. 26, 651–653 (1981)ADSzbMATHGoogle Scholar
  8. 8.
    S.N. Gurbatov, A.I. Saichev, Degeneracy of one-dimensional acouslic turbulence at large-Reynolds numbers, Sov. Phys. JETP 80, 589–595 (1981)Google Scholar
  9. 9.
    S.N. Gurbatov, A.I. Saichev, Probability distribution and spectra of potential hydrodynamic turbulence, Radiophys. Quantum Electron. 27, 303–313 (1984)ADSGoogle Scholar
  10. 10.
    S.N. Gurbatov, A.I. Saichev, One-dimensional turbulence in a viscous polytropic gas, Radio-phys. Quantum Electron. 31, 1043–1054 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    S.N. Gurbatov, S. Simdyankin, E. Aurell, U. Frisch, G. Toth, On the decay of Burgers turbulence, J. Fluid Mech. 344, 349–374 (1997)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    G.M. Molchan, Burgers equation with self-similar Gaussian initial data: tail probabilities, J. Stat. Phys. 88, 1139–1150 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    A. Noullez. S.N. Gurbatov, E. Aurell. S.I. Simdyankin, The global picture of self-similar and not self-similar decay in Burgers turbulence, Phys. Rev E. 71, 056305:1–14 (2005)MathSciNetGoogle Scholar
  14. 14.
    A.I. Saichev, W.A. Woyczynski, Density fields in Burgers and KdV-Burgers turbulence. SIAM J. Appl. Math. 56, 1008–1038 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    A.I. Saichev, W.A. Woyczynski, in The IMA Volumes in Mathematics and its Applications, vol. 77 (Springer, New York, 1996), pp. 167–192Google Scholar
  16. 16.
    A.I. Saichev, W.A. Woyczynski, Evolution of Burgers’ turbulence in the presence of external forces, J. Fluid Mech. 331, 313–343 (1997)ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    J.M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid morion, Kon. Ned. Akad. Wet. Verb. 17, 1–53 (1939)MathSciNetGoogle Scholar
  18. 18.
    S.N. Gurbatov. A.N. Malakhov, A.I. Saichev. Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays and Particles. (Manchester University Press, 1991)Google Scholar
  19. 19.
    O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Plenum, New York, 1977)Google Scholar
  20. 20.
    M.B. Vinogradova, O.V. Rudenko, A.P. Sukhorukov, Theory of Waves (Nauka, Moscow. 1979). In RussianGoogle Scholar
  21. 21.
    W.A. Woyczynski, Burgers-KPZ Turbulence. Gottingen Lectures (Springer, Berlin, 1998)Google Scholar
  22. 22.
    J.M. Burgers, The Nonlinear Diffusion Equation (D. Reidel, Dordrecht, 1974)zbMATHGoogle Scholar
  23. 23.
    U. Frisch, Turbulence: the Legacy of A.N. Kolmogorov (Cambridge University Press, 1995)Google Scholar
  24. 24.
    A.N. Malakhov, A.I. Saichev, Kinetic equations in the theory of random waves, Radiophys. Quantum Electron. 17, 526–534 (1974)ADSCrossRefGoogle Scholar
  25. 25.
    A.I. Saichev, Probabilistic analysis of plane random waves of gas dynamics, Izv. AN SSSR: Mekh. Zhidk. Gaza (5), 99–104 (1982). In RussianGoogle Scholar
  26. 26.
    T. Kármán, L. von Howarth, On the statistical theory of isotropic turbulence, Proc. R. Soc. Lond. 164, 192–215 (1938)ADSCrossRefGoogle Scholar
  27. 27.
    C.C. Lin, W.H. Reid, in Handbuch der Physik, Fluid Dynamics, vol. 2, ed. by S. Flügge, C. Truesdell (Springer, Berlin, 1963), pp. 438–523Google Scholar
  28. 28.
    A.N. Kolmogorov, To degenerence of isotropic turbulence in incompressible viscous liquid, Dokl. Akad. Nauk SSSR [Sov. Phys. Dokl.] 31, 538–541 (1941). In RussianGoogle Scholar
  29. 29.
    L.G. Loitsanskii, in Trudy Tsentral’nogo Aerogidrodinamicheskogo Instituta (1939), pp. 3–23. In RussianGoogle Scholar
  30. 30.
    I. Proudman. W.H. Reid, On the decay of a normally distributed and homogeneous turbulent velocity field, Phil. Trans. R. Soc. Lond. A 247, 163–189 (1954)ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    G.K. Batchelor. I. Proudman, The large-scale structure of homogeneous turbulence, Philos. Trans. Roy. Soc. 248, 69–105 (1956)MathSciNetGoogle Scholar
  32. 32.
    A.S. Motrin, A.M. Yaglom, Statistical Fluid Mechanics, vol. 2 (MIT Press, Cambridge. Mass. 1975)Google Scholar
  33. 33.
    G.L. Eyink, D.J. Thomson, Free decay of turbulence and breakdown of self-similarity, Phys. Fluids 12, 477–479 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    S.N. Gurbatov. A.I. Saichev, I.G. Yakushkin, Nonlinear waves and one-dimensional turbulence in nondispersive media. Sov. Phys. Usp. 26, 857–864 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    A.N. Malakhov, A.I. Saichev, Probabilistic description of random fields satisfying simplest equations of the hydrodynamic type. Sov. Phys. JETP 40, 467–477 (1974)ADSGoogle Scholar
  36. 36.
    O.V. Rudenko, A.P. Chirkin, Theory of nonlinear interaction between monochromatic and noise waves in weakly dispersive media, Sov. Phys. JETP 67, 945 (1974)ADSGoogle Scholar
  37. 37.
    A.I. Saichev, Spectra of certain random waves propagating in nonlinear media, Radiophys. Quantum Electron. 17, 781–787 (1974)ADSCrossRefGoogle Scholar
  38. 38.
    S.N. Gurbatov, A.I. Saichev, Inertial nonlinearily and chaotic molion of particle fluxes. Chaos 3, 333–358 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 39.
    E. Aurell, S.N. Gurbatov, I.I. Wertgcim, Self-preservation of large-scale structures in Burgers turbulence, Phys. Lett. A 182, 109–113 (1993)MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    L. Björnö, S.N. Gurbatov, Evolution of universal high-frequency asymptotic forms of the spectrum in the propagation of high-intensity acoustic noise, Sov. Phys. Acoust. 31, 179–182 (1985)Google Scholar
  41. 41.
    J.D. Fournier, U. Frisch, L’équation de Burgers déterministe et statistique, J. Méc. Théor. Appl. (Paris) 2, 699–750 (1983)MathSciNetzbMATHGoogle Scholar
  42. 42.
    S.N. Gurbatov, A.N. Malakhov, Statistical characteristics of random quasi monochromatic waves in nonlinear media, Sov. Phys. Acoust. 23, 325–329 (1977)Google Scholar
  43. 43.
    S.N. Gurbatov, G.V. Pasmanik, Self-preservation of large-scale structures in a nonlinear viscous medium described by the Burgers equation, J. Exp. Thcoret. Phys. 88, 309–319 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    S.N. Gurbatov, O.V. Rudenko (eds.), Acoustics in Problems (Fizmatlit, Moscow, 2009). In RussianGoogle Scholar
  45. 45.
    A. Noullez, M. Vergassoia, A fast algorithm for discrete Legendre transforms, J. Sci. Comp. 9, 259–281 (1994)zbMATHCrossRefGoogle Scholar
  46. 46.
    D.F. Pernet, R.C. Payne, Nonlinear propagation of signals in air, J. Sound and Vib. 17, 383–387 (1971)ADSCrossRefGoogle Scholar
  47. 47.
    O.V. Rudenko, Interactions of intense noise waves, Sov. Phys. Usp. 29, 620–641 (1986)ADSCrossRefGoogle Scholar
  48. 48.
    Z.S. She, E. Aurell, U. Frisch, The inviscid Burgers equation with initial data of Brownian type, Commun. Math. Phys. 148, 623–641 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. 49.
    Y. Sinai, Statistics of shocks in solutions of inviscid Burgers equation, Commun. Math. Phys. 148, 601–622 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. 50.
    M. Vergassoia, B. Dubrulle, U. Frisch, A. Noullez, Burgers’ equation, Devil’s staircases and the mass distribution for large-scale structures, Astron. Astrophys. 289, 325–356 (1994)ADSGoogle Scholar
  51. 51.
    D.F. Webster, D.T. Blackstock, Collinear interaction of noise with a finite-amplitude tone, J. Acoust. Soc. America. 63, 687–691 (1978)ADSCrossRefGoogle Scholar
  52. 52.
    S. Kida, Asymptotic properties of Burgers turbulence, J. Fluid Mech. 93, 337–377 (1979)MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. 53.
    M.R. Leadbetter, G. Lindgren, II. Rootzen, Extremes and Related Properties of Random Sequences and Processes (Springer, Berlin, 1983)zbMATHCrossRefGoogle Scholar
  54. 54.
    S.A. Molchanov, D. Surgailis. W.A. Woyczynski, Hyperbolic asymptotics in Burgers’ turbulence and extremal processes, Comm. Math. Phys. 168, 209–226 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. N. Gurbatov
    • 1
  • O. V. Rudenko
    • 2
  • A. I. Saichev
    • 3
  1. 1.Radiophysics DepartmentNizhny Novgorod State UniversityNizhny NovgorodRussia
  2. 2.Physics DepartmentMoscow State UniversityMoscowRussia
  3. 3.Radiophysics DepartmentNizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations