Self-action of Spatially Bounded Waves Containing Shock Fronts

  • S. N. Gurbatov
  • O. V. Rudenko
  • A. I. Saichev
Part of the Nonlinear Physical Science book series (NPS)

Abstract

The term self-action is used in wave physics primarily to characterize nonlinear phenomena, where an intense wave, without changing its shape, acquires amplitude-dependent absorption coefficient or propagation velocity. In the first case, one speaks of nonlinear absorption (or amplification) of the wave, whereas in the second case, one speaks of nonlinear dispersion. Note that precisely this permanence or slow variation of its shape allows one to consider the wave as a single whole entity with its own propagation velocity. Discovery of self-focusing of light brought about the first appreciable interest towards self-action effects. Historical background is described in detail in Refs [1,2]. In nonlinear optics, quasi-harmonic waves are stable objects. Their stability appears due to strong dispersion, which prevents generation of waves at other frequencies, i.e. distortion of the profile of the original wave. Self-action of waves is connected with the response of a medium at the fundamental frequency; this response appears due to cubic and higher-order odd nonlinearities of the medium. Note, however, that while considering coupled waves at different frequencies, self-action may also occur in a quadratically nonlinear medium.

Keywords

Shock Front Peak Pressure Nonlinear Medium Harmonic Wave Nonlinear Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium, Sov. Phys. Usp. 10, 609–636 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    S.N. Vlasov, V.I. Talanov, Self-focusing of Waves (Appl. Phys. Inst., Nizhny Novgorod, 1997). In RussianGoogle Scholar
  3. 3.
    G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)MATHGoogle Scholar
  4. 4.
    V.I. Bespalov, VI. Talanov, Filamentary structure of light beams in nonlinear liquids, JETP Lett. 3, 307–312(1966)ADSGoogle Scholar
  5. 5.
    V.I. Talanov, On sell-focusing of electromagnetic waves in nonlinear media, Radiophys. 7, 254–255(1964)MATHGoogle Scholar
  6. 6.
    V.I. Talanov, On self-focusing of waves beams in nonlinear media, JETP Lett. 2, 138–141 (1965)ADSGoogle Scholar
  7. 7.
    O.V Rudenko, Nonlinear sawtooth-shaped waves, Phys. Usp. 38, 965–989 (1995)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    E.V. Lavrent’ev, O.I. Kuzyan, Explosions in the Sea (Sudostroenie, Leningrad, 1977). In RussianGoogle Scholar
  9. 9.
    L.J. Runyan, E.J. Kane, Sonic boom literature survey. Fed. Av. Admin. Rep. FAA-RD-73-129-11, AD771-274 (1973)Google Scholar
  10. 10.
    L.K. Zarembo, V.A. Krasilnikov, Introduction to Nonlinear Acoustics; Sonic and Ultrasonic High-Intensity Waves (Nauka, Moscow, 1966). In RussianGoogle Scholar
  11. 11.
    O.A. Askar’yan, Self-focusing and focusing of ultra-and hypersound, JETP Lett. 4, 78–81 (1966)Google Scholar
  12. 12.
    N.S. Bakhvalov, Y.M. Zhileikin, E.A. Zabolotskaya, Nonlinear Theory of Sound Beams (AIP, New York. 1987)Google Scholar
  13. 13.
    V.G. Andreev, A.A. Karabutov, O.V. Rudenko, O.A. Sapozhnikov, Observation of the self-focusing of sound, JETP Lett. 41, 466–469 (1985)ADSGoogle Scholar
  14. 14.
    V.A. Assman, E.V. Bunkin, A.V. Vernik, G.A. Lyakhov, K.E. Shipilov, Observation of thermal self-action of a sound beam in a liquid, JETP Lett. 41, 182–184 (1985)ADSGoogle Scholar
  15. 15.
    F.V Bunkin, G.A. Lyakhov, K.F. Shipilov, Thermal self-action of acoustic wave packets in a liquid, Phys. Usp. 38, 1099–1118 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    K.A. Naugolnykh, L.A. Ostrovsky, Nonlinear Wave Processes in Acoustics (Cambridge University Press. 1998)Google Scholar
  17. 17.
    E.A. Vinogradov, K.E. Shipilov, Evaluation of the thermal nonlinear self-action of the intensive acoustic beam in air. Thermal self-focusing, Phys. Vibrations 10, 72–77 (2002)Google Scholar
  18. 18.
    F.V. Bunkin, Y.A. Kravtsov, G.A. Lyakhov, Acoustic analogues of nonlinear-optics phenomena, Sov. Phys. Usp. 29, 607–619 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    A.K. Burov, Attainment of large intensities of ultrasound in a liquid, Sov. Phys. Acoust. 4, 315–320(1958)Google Scholar
  20. 20.
    V.Y. Armeev, A.A. Karabutov, A.A. Sapozhnikov, Peculiarities of thermal self-focusing of ultrasound in a liquid. Sov. Phys. Acoust. 33, 109–112 (1987)Google Scholar
  21. 21.
    A.A. Karabutov, O.V. Rudenko, O.A. Sapozhnikov, System of equations for description of thermal self-focusing of sound in a liquid, Moscow Univ. Phys. Bull. 29(4), 68–71 (1988)Google Scholar
  22. 22.
    O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Plenum, New York, 1977)MATHGoogle Scholar
  23. 23.
    B.K. Novikov, O.V. Rudenko, V.I. Timoshenko, Nonlinear Underwater Acoustics (AIP, New York, 1987)Google Scholar
  24. 24.
    O.V. Rudenko, Self-action of wave beams containing shock fronts, Radiophys. Quantum Electron. 46, 338–351 (2003)ADSGoogle Scholar
  25. 25.
    O.V. Rudenko, O.A. Sapozhnikov, Self-action effects for wave beams containing shock fronts, Phys. Usp. 47, 907–922 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    A.A. Karabutov, O.V. Rudenko, O.A. Sapozhnikov, Thermal self-focusing theory with allowance for the formation of shock waves and acoustic flows, Sov. Phys. Acoust. 34, 371–375 (1988)Google Scholar
  27. 27.
    A.A. Karabutov, O.V. Rudenko, O.A. Sapozhnikov, Thermal self-focusing of weak sock waves, Sov. Phys. Acoust. 35, 40–43 (1989)Google Scholar
  28. 28.
    I.M. Hallaj, R.O. Cleveland, K. Hynynen, Simulations of the thermo-acoustic lens effect during focused ultrasound surgery, J. Acoust. Soc. Am. 109, 2245–2253 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    C. Le Floch, M. Tanter, M. Fink, Self-defocusing in ultrasonic hyperthermia: experiment and simulation, Appl. Phys. Lett. 74, 3062–3064 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    O.V. Rudenko, M.M. Sagatov, O.A. Sapozhnikov, Thermal self-focusing of sawtooth waves, Sov. Phys. JETP 71, 449–557 (1990)Google Scholar
  31. 31.
    V.E. Fridman, Ray Theory of Finite-Amplitude. Acoustic Waves: Dr. Sci. Thesis (General Phys. Inst, Moscow, 1985). In RussianGoogle Scholar
  32. 32.
    V.E. Fridman, Self-refraction of weak shock waves. Sov. Phys. Acoust. 28, 551–559 (1982)MathSciNetGoogle Scholar
  33. 33.
    O.V. Rudenko, S.I. Soluyan, R.V. Khokhlov, To the nonlinear theory of paraxial sound beams, Sov. Phys. Doklady 225, 1053–1055 (1975)Google Scholar
  34. 34.
    V.G. Andreev, A.A. Karabutov, O.V. Rudenko, Experimental investigation of sound beams of a finite amplitude, Moscow Univ. Phys. Bull. Ser. 3 Phys. Astron. 25(3), 35–38 (1984)Google Scholar
  35. 35.
    R.C. Preston (ed.), Output Measurements for Medical Ultrasound (Springer, New York, 1991)Google Scholar
  36. 36.
    Y.N. Makov, Waveguide propagation of sound beams in a nonlinear medium, Acoust. Phys. 46, 596–600 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    K.A. Naugolnykh, N.A. Roi, Electric Discharges in Water (Nauka, Moscow, 1971). In RussianGoogle Scholar
  38. 38.
    V.G. Andreev, V.Y. Vcroman, G.A. Denisov, O.V. Rudenko, O.A. Sapozhnikov, Nonlinear-acoustical aspects of extracorporeal lithotripsy, Sov. Phys. Acoust. 38, 325–330 (1992)Google Scholar
  39. 39.
    G.A. Askar’yan, M.G. Korolev, A.V. Yurkin, Generation of intense ultrasonic pulses by planar or concave focusing surface exploded by a current or by a laser beam, JETP Lett. 51, 667–671 (1990)ADSGoogle Scholar
  40. 40.
    A.J. Coleman, I.E. Saunders, R.C. Preston, D.R. Bacon, Pressure waveforms generated by Dornier extracorporeal shock wave lithotripter. Ultrasound Med. Biol. 13, 651–657 (1987)CrossRefGoogle Scholar
  41. 41.
    A.P. Sarvazyan, O.V. Rudenko, S.D. Swanson, J.B. Fowlkes, S.Y. Emelianov, Shear wave elasticity imaging — a new ultrasonic technology of medical diagnostic, Ultrasound Med. Biol. 24, 1419–1436 (1998)CrossRefGoogle Scholar
  42. 42.
    A.G. Musatov, O.V. Rudenko, O.A. Sapozhnikov, Accounting for nonlinear refraction and nonlinear absorption in focusing high-power pulses, Sov. Phys. Acoust. 38, 274–279 (1992)Google Scholar
  43. 43.
    O.A. Sapozhmkov, Focusing of high-power pulse, Acoust. Phys. 37, 760–769 (1991)Google Scholar
  44. 44.
    O.V. Rudenko, O.A. Sapozhnikov, Wave beams in cubically nonlinear nondispersive media., JETP 79, 220–229 (1994)ADSGoogle Scholar
  45. 45.
    O.V. Rudenko, A.P. Sarvazyan, S.Y. Emelianov, Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium, J. Acoust. Soc. Am. 99, 2791–2798 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    A.A. Karabutov, O.V. Rudenko, The modified Khokhlov method for investigation of non-steady transonic flows of a compressed gas, Sov. Phys. Dokl. 24, 835–838 (1979)ADSGoogle Scholar
  47. 47.
    A.A. Karabutov, O.V. Rudenko, Nonlinear plane waves excited by volume sources in a medium moving with transonic velocity, Sov. Phys. Acoust. 25, 306–309 (1979)Google Scholar
  48. 48.
    O.V. Rudenko, in Advances in Nonlinear Acoustics, ed. by H. Hobæk (World Scientific, Singapore, 1993), pp. 3–6Google Scholar
  49. 49.
    O.V. Rudenko, O.A. Sapozhnikov, Inertialess self-focusing of nondispersive waves with a broadband spectrum, Quantum Electron. 23, 896 (1993)ADSCrossRefGoogle Scholar
  50. 50.
    O.V. Rudenko, A.A. Sukhorukov, Diffracting beams in cubically nonlinear media without dispersion, Acoust. Phys. 41(5), 725–730 (1995)ADSGoogle Scholar
  51. 51.
    O.V. Rudenko, A.A. Sukhorukov, Self-action of light beams in media with two-photon absorption. Bull. Russian Acad. Sci. Physics 60(12). 6–25 (1996)Google Scholar
  52. 52.
    I.P. Lee-Bapty, D.G. Crighton, Nonlinear wave motion governed by modified Burgers equation. Philos. Trans. R. Soc. London Ser. A 323, 173–209 (1987)MathSciNetADSMATHCrossRefGoogle Scholar
  53. 53.
    A.M. Vinogradov, I.S. Krasil’shchik, V.V. Lychagin, Introduction to the Geometry of Linear Differential Equations (Nauka, Moscow, 1986). In RussianGoogle Scholar
  54. 54.
    N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics (D. Reidel, Dordrecht, 1985)MATHGoogle Scholar
  55. 55.
    L.V. Ovsyannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982)MATHGoogle Scholar
  56. 56.
    P.J. Olvcr, Applications of Lie Groups to Differential Equations (Springer, New York, 1986)Google Scholar
  57. 57.
    N.H. Ibragimov (ed.), Symmetries, Exact Solutions and Conservation Laws, CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1 (CRC Press, Boca Raton, 1994)Google Scholar
  58. 58.
    N.H. Ibragimov (ed.), Applications in Engineering and Physical Sciences, CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2 (CRC Press, Boca Raton. 1995)Google Scholar
  59. 59.
    N.H. Ibragimov (ed.), New Trends in Theoretical Developments and Computational Methods, CRC Handbook Of Lie Group Analysis of Differential Equations, vol. 3 (CRC Press, Boca Raton, 1996)Google Scholar
  60. 60.
    V.I. Talanov, Focusing of light in cubic media, JETP Lett. 11, 199–201 (1970)ADSGoogle Scholar
  61. 61.
    L.D. Landau, E.M. Lifshilz, The Classical Field Theory (Pergamon Press, Oxford, 1975)Google Scholar
  62. 62.
    E.A. Kuznetsov, Integral criteria of wave collapses, Radiophys. Quantum Electron. 46, 307–322(2003)ADSGoogle Scholar
  63. 63.
    O.V. Rudenko, O.A. Sapozhnikov, Intense acoustic beams: self-action of discontinuous waves, focusing of pulses and extracorporeal lithotripsy, Moscow Univ. Phys. Bull. 46, 3–17 (1991)Google Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. N. Gurbatov
    • 1
  • O. V. Rudenko
    • 2
  • A. I. Saichev
    • 3
  1. 1.Radiophysics DepartmentNizhny Novgorod State UniversityNizhny NovgorodRussia
  2. 2.Physics DepartmentMoscow State UniversityMoscowRussia
  3. 3.Radiophysics DepartmentNizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations