The Role of Lateral Inferior Prefrontal Cortex during Information Retrieval

  • Haiyan Zhou
  • Jieyu Liu
  • Wei Jing
  • Yulin Qin
  • Shengfu Lu
  • Yiyu Yao
  • Ning Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6889)


To investigate the role of lateral inferior prefrontal cortex (LIPFC) during information retrieval, we used two tasks based on the phenomenon of basic-level advantage and its reversal to examine the activities in this region across tasks. As expected, this region was involved in both tasks during the processing of information retrieval. ROI analysis showed there was a stronger activation in word-picture matching (WP) task in LIPFC than that in picture-word matching (PW) task. Moreover, although as for the behavioral performance, we observed a typical basic-level advantage effect in PW task and the reversal advantage effect to more general level in WP task, the activities in left LIPFC were similar across the tasks, which was not consistent with our expectation. The intensity was weakest in the condition of intermediate level, and the differences between intermediate and other two levels reached significant level in WP task. These results suggested the region of LIPFC controlled retrieval of knowledge information, and the activation in LIPFC depended more on internal memory system, not the external task demand.


Information Retrieval Intermediate Level Semantic Memory Posterior Parietal Cortex Visual Word Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosch, E., Mervis, C.B., Gray, W., Johnson, D., Boyes-Braem, P.: Basic objects in natural categories. Cognitive Psychology 8, 382–439 (1976)CrossRefGoogle Scholar
  2. 2.
    Wisniewski, E.J., Murphy, G.L.: Superordinate and basic category names in discourse: A textual analysis. Discourse Processing 12, 245–261 (1989)CrossRefGoogle Scholar
  3. 3.
    Rogers, T., Patterson, K.: Object categorization: Reversals and explanations of the basic-levle advantage. Journal of Experimental Psychology: Gerneral 136(3), 451–469 (2007)CrossRefGoogle Scholar
  4. 4.
    Hodges, J.R., Graham, N., Patterson, K.: Charting the progression in semantic dementia: Implications for the organisation of semantic memory. Memory 3, 463–495 (1995)CrossRefGoogle Scholar
  5. 5.
    Warrington, E.: Selective impairment of semantic memory. Quoterly Journal of Experimental Psychology 27, 635–657 (1975)CrossRefGoogle Scholar
  6. 6.
    VanRullen, R., Thorpe, S.J.: Is it a bird? is it a plane? ultra-rapid visual categorization of natural and artifactual objects. Perception 30, 655–688 (2001)CrossRefGoogle Scholar
  7. 7.
    Large, M., Kiss, I., McMullen, P.: Electrophysiological correlates of objects categorization: Back to basics. Cognitive Brain Research 20, 415–426 (2004)CrossRefGoogle Scholar
  8. 8.
    Anderson, J., Byrne, D., Fincham, J.M., Gunn, P.: Role of prefrontal and parietal cortices in associative learning. Cerebral Cortex 18, 904–914 (2008)CrossRefGoogle Scholar
  9. 9.
    Sohn, M.H., Goode, A., Stenger, V.A., Carter, C.S., Anderson, J.R.: Competition and representation during memory retrieval: Roles of the prefrontal cortex and the posterior parietal cortex. Proceedings of National Academy of Sciences 100, 7412–7417 (2003)CrossRefGoogle Scholar
  10. 10.
    Sohn, M.H., Goode, A., Stenger, V.A., Jung, K.J., Carter, C., Anderson, J.R.: An information-processing model of three cortical regions: Evidence in episodic memory retrieval. Neuroimage 25, 21–33 (2005)CrossRefGoogle Scholar
  11. 11.
    Qin, Y.L., Carter, C.S., Silk, E.M., Stenger, V.A., Fissell, K., Goode, A., Anderson, J.R.: The change of the brain activation patterns as children learn algebra equation solving. Proceedings of the National Academy Sciences 101(15), 5686–5691 (2004)CrossRefGoogle Scholar
  12. 12.
    Ravizza, S.M., Anderson, J.R., Carter, C.S.: Errors of mathematical processing: The relationship of accuracy to neural regions associated with retrieval or representation of the problem state. Brain Research 1238, 118–126 (2008)CrossRefGoogle Scholar
  13. 13.
    Anderson, J.R., Anderson, J.F., Ferris, J.L., Fincham, J.M., Jung, K.J.: The lateral inferior prefrontal cortex and anterior cingulate cortex are engaged at different stages in the solution of insight problems. Proceedings of the National Academy Sciences 106(26), 10799–10804 (2009)CrossRefGoogle Scholar
  14. 14.
    Binder, J.R., Desai, R.H., Graves, W.W., Conant, L.L.: Where is the semantic system? a critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex 19, 2767–2796 (2009)CrossRefGoogle Scholar
  15. 15.
    Grodzinsky, Y.: The neurology of syntax: language use without broca’s area. Behavioural and Brain Sciences 23, 47–117 (2000)CrossRefGoogle Scholar
  16. 16.
    Moss, H.E., Abdallah, S., Fletcher, P., Bright, P., Pilgrim, L., Acres, K., Tyler, L.K.: Selecting among competing alternatives: selection and controlled retrieval in the left prefrontal cortex. Cerebral Cortex 15, 1723–1735 (2005)CrossRefGoogle Scholar
  17. 17.
    Poldrack, R.A., Wagner, A.D., Prull, M.W., Desmond, J.E., Glover, G.H., Gabrieli, J.D.E.: Functional specialization for semantic and phonological processing in the left inferior frontal cortex. Neuroimage 10, 15–35 (1999)CrossRefGoogle Scholar
  18. 18.
    Fletcher, P.C., Henson, R.N.A.: Frontal lobes and human memory: insights from neuroimaging. Brain 124, 849–881 (2001)CrossRefGoogle Scholar
  19. 19.
    Hofmann, M.J., Herrmann, M.J., Dan, I., Obrig, H., Conrad, M., Kunchinke, L., Jacobs, A.M., Fallgatter, A.J.: Differential activation of frontal and parietal regions during visual word recognition: An optical topography study. Neuroimage 40, 1340–1349 (2008)CrossRefGoogle Scholar
  20. 20.
    Thompson-Schill, S., D’Esposito, M., Aguirre, G., Farah, M.: Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of National Academic Science 94, 14792–14797 (1997)CrossRefGoogle Scholar
  21. 21.
    Zhou, H., Liu, J., Jing, W., Qin, Y., Lu, S., Yao, Y., Zhong, N.: Basic level advantage and its switching during information retrieval: An fMRI study. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds.) BI 2010. LNCS, vol. 6334, pp. 427–436. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Fiebach, C., Friederici, A., Mueller, K., Von Cramon, D., Hernandez, A.: Distinct brain representations for early and late learned words. Neuroimage 19, 1627–1637 (2003)CrossRefGoogle Scholar
  23. 23.
    Fiebach, C., Friederici, A., Mueller, K., Von Cramon, D.: fmri evidence for dual routes to the mental lexicon in visual word recognition. Journal of Cognitive Neuroscience 14, 11–23 (2002)CrossRefGoogle Scholar
  24. 24.
    Murphy, G.: Parts in object concepts: Experiments with artificial categories. Memory and Cognition 19, 423–438 (1991)CrossRefGoogle Scholar
  25. 25.
    Fiez, J.A.: Phonology, semantcis and the role of the left inferior prefrontal cortex. Human Brain Mapping 5, 79–83 (1997)CrossRefGoogle Scholar
  26. 26.
    Miller, E.K., Freedman, D.J., Wallis, J.D.: The prefrontal cortex: categories, concepts and cognition. Philosophical Transactions of the Royal Society B: Biological Science 357, 1123–1136 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Haiyan Zhou
    • 1
  • Jieyu Liu
    • 1
  • Wei Jing
    • 1
  • Yulin Qin
    • 1
    • 2
  • Shengfu Lu
    • 1
  • Yiyu Yao
    • 1
    • 3
  • Ning Zhong
    • 1
    • 4
  1. 1.International WIC InstituteBeijing University of TechnologyChina
  2. 2.Dept. of PsychologyCarnegie Mellon UniversityUSA
  3. 3.Dept. of Computer ScienceUniversity of ReginaCanada
  4. 4.Dept. of Life Science and InformaticsMaebashi Institute of TechnologyJapan

Personalised recommendations