Bockermann, C., Apel, M., Meier, M.: Learning sql for database intrusion detection using context-sensitive modelling. In: Proc. 6th Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 196–205. Springer, Heidelberg (2009)
CrossRef
Google Scholar
Bovet, D., Cesati, M.: Understanding the Linux Kernel, 3rd edn. O’Reilly & Associates, Inc., Sebastopol (2005)
Google Scholar
Bucy, J.S., Schindler, J., Schlosser, S.W., Ganger, G.R.: The disksim simulation environment version 4.0 reference manual. Tech. Rep. CMU-PDL-08-101, Carnegie Mellon University (May 2008)
Google Scholar
Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of production systems. In: Proc. of USENIX ATEC 2004. USENIX, Berkeley (2004)
Google Scholar
Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Finding hierarchical heavy hitters in data streams. In: VLDB 2003: Proceedings of the 29th International Conference on Very Large Data Bases, pp. 464–475. VLDB Endowment (2003)
Google Scholar
Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Diamond in the rough: finding hierarchical heavy hitters in multi-dimensional data. In: SIGMOD 2004: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 155–166. ACM, New York (2004)
CrossRef
Google Scholar
Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Finding hierarchical heavy hitters in streaming data. ACM Trans. Knowl. Discov. Data 1(4), 1–48 (2008)
CrossRef
Google Scholar
Domingos, P., Pazzani, M.: Beyond independence: Conditions for the optimality of the simple bayesian classifier. In: Machine Learning, pp. 105–112. Morgan Kaufmann, San Francisco (1996)
Google Scholar
Eigler, F., Hat, R.: Problem solving with systemtap. In: Proceedings of the Ottawa Linux Symposium, vol. 2006 (2006)
Google Scholar
Frank, A., Asuncion, A.: UCI machine learning repository (2010)
Google Scholar
Gupta, K., Nath, B., Ramamohanarao, K.: Conditional random fields for intrusion detection. In: 21st Intl. Conf. on Adv. Information Netw. and Appl., pp. 203–208 (2007)
Google Scholar
Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning, corrected edn. Springer, Heidelberg (2003)
MATH
Google Scholar
Huang, J., Lu, J., Ling, L.C.X.: Comparing naive bayes, decision trees, and svm with auc and accuracy. In: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 553–556. IEEE Computer Society, Los Alamitos (2003)
Google Scholar
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine Learning, pp. 282–289 (2001)
Google Scholar
Lohmann, D., Hofer, W., Schröder-Preikschat, W., Streicher, J., Spinczyk, O.: CiAO: An aspect-oriented operating-system family for resource-constrained embedded systems. In: Proc. of USENIX ATEC. USENIX, Berkeley (2009)
Google Scholar
Malouf, R.: A comparison of algorithms for maximum entropy parameter estimation. In: COLING-02: Proceedings of the 6th Conference on Natural Language Learning, pp. 1–7. Association for Computational Linguistics, Morristown (2002)
Google Scholar
Nocedal, J.: Updating quasi-newton matrices with limited storage. Mathematics of Computation 35(151), 773–782 (1980)
MathSciNet
CrossRef
MATH
Google Scholar
Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)
CrossRef
Google Scholar
Schraudolph, N.N., Graepel, T.: Conjugate directions for stochastic gradient descent. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 1351–1358. Springer, Heidelberg (2002)
CrossRef
Google Scholar
Schraudolph, N.N., Yu, J., Günter, S.: A stochastic quasi-Newton method for online convex optimization. In: Meila, M., Shen, X. (eds.) Proc. 11th Intl. Conf. Artificial Intelligence and Statistics (AIstats). Workshop and Conference Proceedings, jmlr, San Juan, Puerto Rico, vol. 2, pp. 436–443 (2007)
Google Scholar
Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: NAACL 2003: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp. 134–141. Association for Computational Linguistics, Morristown (2003)
Google Scholar
Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. Wiley Publishing, Chichester (2010)
MATH
Google Scholar
Sutton, C., McCallum, A.: An Introduction to Conditional Random Fields for Relational Learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning, MIT Press, Cambridge (2007)
Google Scholar
Tartler, R., Lohmann, D., Schröder-Preikschat, W., Spinczyk, O.: Dynamic AspectC++: Generic advice at any time. In: The 8th Int. Conf. on Software Methodologies, Tools and Techniques, IOS Press, Prague (2009) (to appear)
Google Scholar
Tian, S., Mu, S., Yin, C.: Sequence-similarity kernels for SVMs to detect anomalies in system calls. Neurocomput. 70(4-6), 859–866 (2007)
CrossRef
Google Scholar
Timm, C., Gelenberg, A., Weichert, F., Marwedel, P.: Reducing the Energy Consumption of Embedded Systems by Integrating General Purpose GPUs. Tech. Rep. 829, Technische Universität Dortmund, Fakultät für Informatik (2010)
Google Scholar
Vishwanathan, S.V.N., Schraudolph, N.N., Schmidt, M.W., Murphy, K.P.: Accelerated training of conditional random fields with stochastic gradient methods. In: ICML 2006: Proceedings of the 23rd International Conference on Machine Learning, pp. 969–976. ACM, New York (2006)
Google Scholar