GUSS: Solving Collections of Data Related Models Within GAMS

  • Michael R. Bussieck
  • Michael C. Ferris
  • Timo Lohmann
Part of the Applied Optimization book series (APOP, volume 104)


In many applications, optimization of a collection of problems is required where each problem is structurally the same, but in which some or all of the data defining the instance is updated. Such models are easily specified within modern modeling systems, but have often been slow to solve due to the time needed to regenerate the instance, and the inability to use advance solution information (such as basis factorizations) from previous solves as the collection is processed. We describe a new language extension, GUSS, that gathers data from different sources/symbols to define the collection of models (called scenarios), updates a base model instance with this scenario data and solves the updated model instance and scatters the scenario results to symbols in the GAMSdatabase. We demonstrate the utility of this approach in three applications, namely data envelopment analysis, cross validation and stochastic dual dynamic programming. The language extensions are available for general use in all versions of GAMSstarting with release 23.7.


Data Envelopment Analysis Data Envelopment Analysis Model Model Instance Solve Statement GAMS Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported in part by Air Force Grant FA9550-10-1-0101, DOE grant DE-SC0002319, and National Science Foundation Grant CMMI-0928023.


  1. 1.
    Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30(9), 1078–1092 (1984)CrossRefGoogle Scholar
  2. 2.
    Banker, R.D., Morey, R.C.: Efficiency analysis for exogenously fixed inputs and outputs. Oper. Res. 34(4), 513–521 (1986)CrossRefGoogle Scholar
  3. 3.
    Banker, R.D., Morey, R.C.: The use of categorical variables in data envelopment analysis. Manag. Sci. 32(12), 1613–1627 (1986)CrossRefGoogle Scholar
  4. 4.
    Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4(1), 238–252 (1962)CrossRefGoogle Scholar
  5. 5.
    Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer, London (1997)Google Scholar
  6. 6.
    Bussieck, M.R., Ferris, M.C., Meeraus, A.: Grid enabled optimization with GAMS. INFORMS J. Comput. 21(3), 349–362 (2009)CrossRefGoogle Scholar
  7. 7.
    Bussieck, M.R., Meeraus, A.: General algebraic modeling system (GAMS). In: Kallrath, J. (eds.) Modeling Languages in Mathematical Optimization, pp. 137–157. Kluwer Academic Publishers, Norwell, MA (2003)Google Scholar
  8. 8.
    Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24, 37–45 (1999)CrossRefGoogle Scholar
  9. 9.
    Charnes, A., Cooper, W., Lewin, A.Y., Seiford, L.M.: Data envelopment analysis: Theory, Methodology and Applications. Kluwer Academic Publishers, Boston, MA (1994)CrossRefGoogle Scholar
  10. 10.
    Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2, 429–444 (1978)CrossRefGoogle Scholar
  11. 11.
    Cooper, W.W., Seiford, L.M., Tone, K.: Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver Software. Kluwer Academic Publishers, Boston, MA (2000)Google Scholar
  12. 12.
    Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8, 101–111 (1960)CrossRefGoogle Scholar
  13. 13.
    Efron, B., Tibshirani, R.: Improvements on cross-validation: The.632 + bootstrap method. J. Amer. Stat. Assoc. 92, 548–560 (1997)Google Scholar
  14. 14.
    Farrell, M.J.: The measurement of productive efficiency. J. Roy. Stat. Soc. A (General) 120(3), 253–290 (1957)Google Scholar
  15. 15.
    Ferris, M.C., Maravelias, C.T., Sundaramoorthy, A.: Simultaneous batching and scheduling using dynamic decomposition on a grid. INFORMS J. Comput. 21(3), 398–410 (2009)CrossRefGoogle Scholar
  16. 16.
    Ferris, M.C., Voelker, M.M.: Slice models in general purpose modeling systems: An application to DEA. Optim. Meth. Software 17, 1009–1032 (2002)CrossRefGoogle Scholar
  17. 17.
    Geisser, S.: Predictive Inference. Chapman and Hall, New York (1993)Google Scholar
  18. 18.
    Kallrath, J. (ed.): Modeling languages in mathematical optimization. Kluwer Academic Publishers, Norwell, MA (2003)Google Scholar
  19. 19.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence 2, pp. 1137–1143. Morgan Kaufmann, San Mateo (1995)Google Scholar
  20. 20.
    Olesen, O.B., Petersen, N.C.: A presentation of GAMS for DEA. Comput. Oper. Res. 23(4), 323–339 (1996)CrossRefGoogle Scholar
  21. 21.
    Pereira, M.V.F., Pinto, L.M.V.G.: Stochastic optimization of a multireservoir hydroelectric system: A decomposition approach. Water Resour. Res. 21(6), 779–792 (1985)CrossRefGoogle Scholar
  22. 22.
    Pereira, M.V.F., Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52, 359–375 (1991)CrossRefGoogle Scholar
  23. 23.
    Picard, R., Cook, D.: Cross-validation of regression models. J. Am. Stat. Assoc. 79, 575–583 (1984)CrossRefGoogle Scholar
  24. 24.
    Seiford, L.M., Zhu, J.: Sensitivity analysis of DEA models for simultaneous changes in all the data. J. Oper. Res. Soc. 49, 1060–1071 (1998)Google Scholar
  25. 25.
    Simar, L., Wilson, P.W.: Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag. Sci. 44(1), 49–61 (1998)CrossRefGoogle Scholar
  26. 26.
    Thanassoulis, E., Boussofiane, A., Dyson, R.G.: Exploring output quality targets in the provision of perinatal care in England using DEA. European J. Oper. Res. 60, 588–608 (1995)CrossRefGoogle Scholar
  27. 27.
    Velaśquez, J., Restrepo, P., Campo, R.: Dual dynamic programming: A note on implementation. Water Resour. Res. 35(7) (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael R. Bussieck
    • 1
  • Michael C. Ferris
    • 2
  • Timo Lohmann
    • 3
  1. 1.GAMS Software GmbHCologneGermany
  2. 2.University of WisconsinMadisonUSA
  3. 3.Colorado School of MinesGoldenUSA

Personalised recommendations