Skip to main content

Towards a Self-Reflective, Context-Aware Semantic Representation of Mathematical Specifications

  • Chapter
  • First Online:

Part of the book series: Applied Optimization ((APOP,volume 104))

Abstract

We discuss a framework for the representation and processing of mathematics developed within and for the MoSMathproject. The MoSMathproject aims to create a software system that is able to translate optimization problems from an almost natural language to the algebraic modeling language AMPL. As part of a greater vision (the FMathL project), this framework is designed both to serve the optimization-oriented MoSMathproject, and to provide a basis for the much more general FMathL project. We introduce the semantic memory, a data structure to represent semantic information, a type system to define and assign types to data, and the semantic virtual machine (SVM), a low level, Turing-complete programming system that processes data represented in the semantic memory. Two features that set our approach apart from other frameworks are the possibility to reflect every major part of the system within the system itself, and the emphasis on the context-awareness of mathematics. Arguments are given why this framework appears to be well suited for the representation and processing of arbitrary mathematics. It is discussed which mathematical content the framework is currently able to represent and interface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The FMathL web site is available at http://www.mat.univie.ac.at/~neum/FMathL.html

  2. 2.

    http://www.mat.univie.ac.at/~neum/FMathL.html

References

  1. Andrews, P.: A Universal Automated Information System for Science and Technology. In: First Workshop on Challenges and Novel Applications for Automated Reasoning, pp. 13–18 (2003)

    Google Scholar 

  2. Beasley, J.: OR-Library: Distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990)

    Google Scholar 

  3. Boyer, R., et al.: The QED Manifesto. Automated Deduction–CADE 12, 238–251 (1994)

    Google Scholar 

  4. Clark, J., Murata, M., et al.: Relax NG specification – Committee Specification 3 December 2001. Web document (2001). http://www.oasis-open.org/committees/relaxng/spec-20011203.html

  5. Covington, M.: A fundamental algorithm for dependency parsing. In: Proceedings of the 39th annual ACM southeast conference, pp. 95–102. Citeseer (2001)

    Google Scholar 

  6. Cramer, M., Fisseni, B., Koepke, P., Kühlwein, D., Schröder, B., Veldman, J.: The Naproche Project Controlled Natural Language Proof Checking of Mathematical Texts. Controlled Natural Language pp. 170–186 (2010)

    Google Scholar 

  7. Fourer, R., Gay, D., Kernighan, B.: A modeling language for mathematical programming. Management Science 36(5), 519–554 (1990)

    Article  Google Scholar 

  8. Ganter, B., Wille, R.: Formale Begriffsanalyse: Mathematische Grundlagen. Springer-Verlag Berlin Heidelberg New York (1996)

    Google Scholar 

  9. Humayoun, M., Raffalli, C.: MathNat – Mathematical Text in a Controlled Natural Language. Special issue: Natural Language Processing and its Applications p. 293 (2010)

    Google Scholar 

  10. Jefferson, S., Friedman, D.: A simple reflective interpreter. LISP and symbolic computation 9(2), 181–202 (1996)

    Article  Google Scholar 

  11. Jurafsky, D., Martin, J., Kehler, A., van der Linden, K., Ward, N.: Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition, vol. 163. MIT Press (2000)

    Google Scholar 

  12. Klarlund, N., Moeller, A., I., S.M.: Meta-DSD. Web document (1999). http://www.brics.dk/DSD/metadsd.html

  13. Kofler, K.: A Dynamic Generalized Parser for Common Mathematical Language. PhD thesis (In preparation)

    Google Scholar 

  14. Kofler, K., Schodl, P., Neumaier, A.: Limitations in Content MathML. Technical report (2009). http://www.mat.univie.ac.at/~neum/FMathL.html%5C#Related

  15. Kofler, K., Schodl, P., Neumaier, A.: Limitations in OpenMath. Technical report (2009). http://www.mat.univie.ac.at/~neum/FMathL.html%5C#Related

  16. Lee, D., Chu, W.: Comparative analysis of six XML schema languages. ACM SIGMOD Record 29(3), 76–87 (2000)

    Article  Google Scholar 

  17. Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific American 284(5), 34–43 (2001)

    Google Scholar 

  18. Manola, F., Miller, E., et al.: RDF Primer. Web document (2004). http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

  19. McCarthy, J.: A micro-manual for LISP – not the whole truth. ACM SIGPLAN Notices 13(8), 215–216 (1978)

    Article  Google Scholar 

  20. Miller, B.: LaTeXML the manual. Web document (2011). http://dlmf.nist.gov/LaTeXML/manual.pdf

  21. Neumaier, A.: Analysis und lineare Algebra. Lecture notes (2008). http://www.mat.univie.ac.at/~neum/FMathL.html%5C#ALA

  22. Neumaier, A.: The FMathL mathematical framework. Draft version (2009). http://www.mat.univie.ac.at/~neum/FMathL.html%5C#foundations

  23. Neumaier, A., Marginean, F.A.: Models for context logic. Draft version (2010). http://www.mat.univie.ac.at/~neum/FMathL.html%5C#Contextlogic

  24. Neumaier, A., Schodl, P.: A Framework for Representing and Processing Arbitrary Mathematics. Proceedings of the International Conference on Knowledge Engineering and Ontology Development pp. 476–479 (2010). An ealier version is available at http://www.mat.univie.ac.at/~schodl/pdfs/IC3K_10.pdf

  25. Neumaier, A., Schodl, P.: A semantic virtual machine. Draft version (2011). http://www.mat.univie.ac.at/~neum/FMathL.html%5C#SVM

  26. Ranta, A.: Grammatical framework. Journal of Functional Programming 14(02), 145–189 (2004)

    Article  Google Scholar 

  27. Schodl, P.: Foundations for a self-reflective, context-aware semantic representation of mathematical specifications. PhD thesis (2011)

    Google Scholar 

  28. Schodl, P., Neumaier, A.: An experimental grammar for German mathematical text. Manuscript (2009). http://www.mat.univie.ac.at/~neum/FMathL.html%5C#ALA

  29. Schodl, P., Neumaier, A.: A typesheet for optimization problems in the semantic memory. Web document (2011). Available at http://www.mat.univie.ac.at/~neum/FMathL.html%5C#TypeSystems

  30. Schodl, P., Neumaier, A.: A typesheet for types in the semantic memory. Web document (2011). Available at http://www.mat.univie.ac.at/~neum/FMathL.html%5C#TypeSystem

  31. Schodl, P., Neumaier, A.: Representing expressions in the semantic memory. Draft version (2011). http://www.mat.univie.ac.at/~neum/FMathL.html%5C#TypeSystem

  32. Schodl, P., Neumaier, A.: The FMathL type system. Draft version (2011). http://www.mat.univie.ac.at/~neum/FMathL.html%5C#TypeSystem

  33. Shapiro, S.: An introduction to SNePS 3. Conceptual Structures: Logical, Linguistic, and Computational Issues pp. 510–524 (2000)

    Google Scholar 

  34. Sutcliffe, G., Suttner, C.: The TPTP problem library. Journal of Automated Reasoning 21(2), 177–203 (1998)

    Article  Google Scholar 

  35. Trybulec, A., Blair, H.: Computer assisted reasoning with Mizar. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 26–28. Citeseer (1985)

    Google Scholar 

  36. Walsh, T.: A Grand Challenge for Computing Research: a mathematical assistant. In: First Workshop on Challenges and Novel Applications for Automated Reasoning, pp. 33–34 (2003)

    Google Scholar 

Download references

Acknowledgements

Support by the Austrian Science Fund (FWF) under contract number P20631 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schodl, P., Neumaier, A., Kofler, K., Domes, F., Schichl, H. (2012). Towards a Self-Reflective, Context-Aware Semantic Representation of Mathematical Specifications. In: Kallrath, J. (eds) Algebraic Modeling Systems. Applied Optimization, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23592-4_2

Download citation

Publish with us

Policies and ethics