Dual-Primal Methods

  • Clemens Pechstein
Chapter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 90)

Abstract

Dual-primal FETI (FETI-DP) methods were first introduced by Farhat, Lesoinne, Le Tallec, Pierson, and Rixen in [FLL+01] (as a further development of a FETI method suitable for fourth order problems, [FLP00]). The main idea is to keep unknowns at the subdomain vertices (corners, crosspoints) primal, i.e., do not break the continuity and introduce dual Lagrange multipliers there. This way, after an elimination of these primal unknowns (which can be seen as a coarse problem), the resulting subdomain operators are always invertible, because of vanishing values at the subdomain vertices. As a great advantage in the implementation of dual-primal methods (in contrast to one-level FETI methods), the local kernels do not have to be known explicitly.

Keywords

Saddle Point Problem Local Kernel Unbounded Case Local Basis Function Coarse Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. AB05.
    G. Allaire and R. Brizzi. A multiscale finite element method for numerical homogenization. Multiscale Model. Simul., 4(3):790–812, 2005.Google Scholar
  2. AB06.
    T. Arbogast and K.J. Boyd. Subgrid upscaling and mixed multiscale finite elements. SIAM J. Numer. Anal., 44:1150–1171, 2006.Google Scholar
  3. ABDP81.
    R. E. Alcouffe, Achi Brandt, J. E. Dendy, Jr., and J. W. Painter. The multi-grid method for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Comput., 2(4):430–454, 1981.Google Scholar
  4. AF03.
    R. A. Adams and J. J. F. Fournier. Sobolev Spaces, volume 140 of Pure and Applied Mathematics. Academic Press, Amsterdam, Boston, second edition, 2003.Google Scholar
  5. AG02.
    M. Ainsworth and B. Guo. Analysis of iterative sub-structuring techniques for boundary element approximation of the hypersingular operator in three dimensions. Appl. Anal., 81(2):241–280, 2002.Google Scholar
  6. AGKS08.
    B. Aksoylu, I. G. Graham, H. Klie, and R. Scheichl. Towards a rigorously justified algebraic preconditioner for high-contrast diffusion problems. Comput. Visual Sci., 11(4-6):319–331, 2008.Google Scholar
  7. AS97.
    M. Ainsworth and B. Senior. Aspects of an adaptive hp-finite element method: adaptive strategy, conforming approximation and efficient solvers. Comput. Methods Appl. Mech. Engrg., 150(1-4):65–87, 1997.Google Scholar
  8. Bas96.
    P. Bastian. Parallele Adaptive Mehrgitterverfahren. Teubner Skripten zur Numerik. B. G. Teubner, Stuttgart, 1996.Google Scholar
  9. BB08.
    S. Boerm and J. Bendoraityte. Distributed \({\mathcal{H}}^{2}\)-matrices for non-local operators. Comput. Visual Sci., 11(4-6):237–249, 2008.Google Scholar
  10. BBC+06.
    Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli. Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci., 16(7):1031–1090, 2006.Google Scholar
  11. BBK+09.
    D. Balzani, D. Brands, A. Klawonn, O. Rheinbach, and J. Schröder. On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies. Archive of Applied Mechanics, 80(5):479–488, 2009.Google Scholar
  12. BCLP10.
    L. Beirão da Veiga, C. Chinosi, C. Lovadina, and L. F. Pavarino. Robust BDDC preconditioners for Reissner - Mindlin plate bending problems and MITC elements. SIAM J. Numer. Anal., 47(6):4214–4238, 2010.Google Scholar
  13. BCPS12.
    L. Beirão da Veiga, D. Cho, L. F. Pavarino, and S. Scacchi. BDDC preconditioners for isogeometric analysis. Math. Models Methods Appl. Sci., 2012. accepted for publication.Google Scholar
  14. BDF+00.
    M. Bhardwaj, D. Day, C. Farhat, M. Lesoinne, K. Pierson, and D. Rixen. Application of the FETI method to ASCI problems—scalability results on 1000 processors and discussion of highly heterogeneous problems. Int J. Numer. Meth. Engng., 47:513–535, 2000.Google Scholar
  15. BDS08.
    J. Bouchala, Z. Dostál, and M. Sadowská. Theoretically supported scalable BETI method for variational inequalities. Computing, 82(1):53–75, 2008.Google Scholar
  16. BDV97.
    P. E. Bjørstad, M. Dryja, and E. Vainikko. Additive schwarz methods without subdomain overlap and with new coarse spaces. In R. Glowinski, Z.-C. Shi J. Périaux, and O. Widlund, editors, Domain Decomposition Methods in Sciences and Engineering (Beijing, 1995), pages 141–157. John Wiley & Sons, Chichester, 1997. http://www.ddm.org/DD08/.
  17. Beb00.
    M. Bebendorf. Effiziente numerische Lösung von Randintegralgleichungen unter Verwendung von Niedrigrang-Matrizen. PhD thesis, Universität Saarbrücken, 2000.Google Scholar
  18. Beb03.
    M. Bebendorf. A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen, 22(4):751–756, 2003.Google Scholar
  19. Beb05.
    M. Bebendorf. Hierarchical LU decomposition based preconditioners for BEM. Computing, 74(3):225–247, 2005.Google Scholar
  20. Beb08.
    M. Bebendorf. Hierarchical Matrices – A Means to Efficiently Solve Elliptic Boundary Value Problems, volume 63 of Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin, 2008.Google Scholar
  21. BEL08.
    S. Beuchler, T. Eibner, and U. Langer. Primal and dual interface concentrated iterative substructuring methods. SIAM J. Numer. Anal., 46(6):2818–2842, 2008.Google Scholar
  22. BF91.
    F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.Google Scholar
  23. BG86.
    I. Babuska and B. Q. Guo. The h-p version of the finite element method, part 1: the basic approximation results. Comp. Mech., 1:22–41, 1986.Google Scholar
  24. BGH06.
    S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical matrices. Lecture Note 21/2003, Max-Planck-Institut für Mathematik und Naturwissenschaften, Inselstr. 22, 04103 Leipzig, Germany, 2006. revised version, http://www.mis.mpg.de/preprints/ln/lecturenote-2103.pdf.
  25. BGLV89.
    J.-F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu. Variational formulation and algorithm for trace operator in domain decomposition calculations. In T. Chan, R. Glowinski, J. Périaux, and O. Widlund, editors, Domain Decomposition Methods. Second International Symposium on Domain Decomposition Methods, pages 3–16. SIAM, Philadelphia, PA, 1989. http://www.ddm.org/DD02/.
  26. BH70.
    J. H. Bramble and S. R. Hilbert. Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal., 7:112–124, 1970.Google Scholar
  27. BH03.
    S. C. Brenner and Q. He. Lower bounds for three-dimensional nonoverlapping domain decomposition algorithms. Numer. Math., 93(3):445–470, 2003.Google Scholar
  28. BHK08.
    C. Bertoglio, W. Hackbusch, and B. N. Khoromskij. Low rank tensor-product approximation of projected green kernels via sinc-quadratures. Preprint 79/2008, MPI MIS, Leipzig, 2008.Google Scholar
  29. BJ79.
    F. Brezzi and C. Johnson. On the coupling of boundary integral and finite element methods. Calcolo, 16:189–201, 1979.Google Scholar
  30. BJN78.
    F. Brezzi, C. Johnson, and J. C. Nédélec. On the coupling of boundary integral and finite element methods. In Proceedings of the Fourth Symposium on Basic Problems of Numerical Mathematics (Pilzen, 1978), pages 103–114. Charles University, Prague, 1978.Google Scholar
  31. BK95.
    S. Buckley and P. Koskela. Sobolev-Poincaré implies John. Math. Res. Lett., 2(5):577–593, 1995.Google Scholar
  32. BK05.
    M. Bebendorf and R. Kriemann. Fast parallel solution of boundary integral equations and related problems. Comput. Visual Sci., 8(3-4):121–135, 2005.Google Scholar
  33. BKRS08.
    D. Brands, A. Klawonn, O. Rheinbach, and J. Schrd̈er. Modeling and convergence in arterial wall simulations using a parallel FETI solution strategy. Computer Methods in Biomechanics and Biomedical Engineering, 11(5):569–583, 2008.Google Scholar
  34. BM97.
    C. Bernardi and Y. Maday. Spectral methods. In P. G. Ciarlet and J.-L. Lions, editors, Handbook of Numerical Analysis, Volume V: Techniques of Scientific Computing (Part 2). North-Holland, 1997.Google Scholar
  35. BMP94.
    C. Bernardi, Y. Maday, and A. T. Patera. A nonconforming approach to domain decomposition: The mortar element method. In H. Brezis and J.-L. Lions, editors, College de France Seminar, pages 13–51. Longman Scientific and Technical Harlow, UK, 1994.Google Scholar
  36. Boj88.
    B. Bojarski. Remarks on Sobolev imbedding inequalities. In Complex analysis, Joensuu 1987, volume 1351 of Lecture Notes in Math., pages 52–68. Springer-Verlag, Berlin, 1988.Google Scholar
  37. BP88.
    J. H. Bramble and J. E. Pasciak. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Mathematics of Computation, 50(181):1–17, 1988.Google Scholar
  38. BPS86.
    J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for elliptic problems by substructuring, I. Math. Comp., 47(175):103–134, 1986.Google Scholar
  39. BPS87.
    J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for elliptic problems by substructuring, II. Math. Comp., 49(179):1–16, 1987.Google Scholar
  40. BPS88.
    J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for elliptic problems by substructuring, III. Math. Comp., 51(184):415–430, 1988.Google Scholar
  41. BPS89.
    J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for elliptic problems by substructuring, IV. Math. Comp., 53(187):1–24, 1989.Google Scholar
  42. Bra01.
    D. Braess. Finite elements. Theory, fast solvers, and applications in solid mechanics. Cambridge University Press, Cambridge, 2001.Google Scholar
  43. Bre00.
    F. Brezzi. Interacting with the subgrid world. In D.F. Griffiths and G.A. Watson, editors, Numerical Analysis 1999, pages 69–82. Chapman & Hall/CRC, Boca Raton, 2000.Google Scholar
  44. Bre02.
    S. C. Brenner. A new look at FETI. In N. Debit, M. Garbey, R. Hoppe, J. Périaux, D. Keyes, and Y. Kuznetsov, editors, Domain decomposition methods in science and engineering (Lyon, 2000), Theory Eng. Appl. Comput. Methods, pages 41–51. Internat. Center Numer. Methods Eng. (CIMNE), Barcelona, 2002. http://www.ddm.org/DD13/.
  45. Bre03a.
    S. C. Brenner. An additive Schwarz preconditioner for the FETI method. Numerische Mathematik, 94(1):1–31, 2003.Google Scholar
  46. Bre03b.
    S. C. Brenner. Analysis of two-dimensional FETI-DP preconditioners by the standard additive Schwarz framework. Electron. Trans. Numer. Anal., 16:165–185, 2003.Google Scholar
  47. BS87.
    I. Babuška and M. Suri. The h-p version of the finite element method with quasi-uniform meshes. RAIRO Modél. Math. Anal. Numér., 21(2):199–238, 1987.Google Scholar
  48. BS00.
    S. C. Brenner and L.-Y. Sung. Discrete Sobolev and Poincaré inequalities via Fourier series. East-West J. Numer. Math., 8(2):83–92, 2000.Google Scholar
  49. BS02.
    S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 2002.Google Scholar
  50. BS07.
    S. C. Brenner and L. Sung. BDDC and FETI-DP without matrices or vectors. Comput. Methods Appl. Mech. Engrg., 8:1429–1435, 2007.Google Scholar
  51. BSEH11.
    M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes. Isogeometric finite element data structures based on Bézier extraction of NURBS. Internat. J. Numer. Methods Engrg., 87(1-5):15–47, 2011.Google Scholar
  52. BX91.
    J. H. Bramble and J. Xu. Some estimates for a weighted L 2 projection. Math. Comp., 56(194):463–476, 1991.Google Scholar
  53. BZ00.
    J. H. Bramble and X. Zhang. The analysis of multigrid methods. In P. G. Ciarlet and J. Lions, editors, Handbook of Numerical Analysis, volume VII, pages 173–415. North-Holland, Amsterdam, 2000.Google Scholar
  54. CCC+03.
    W. C. Chew, H. Y. Chao, T. J. Cui, C. C. Lu, S. Ohnuki, Y. C. Pan, J. M. Song, S. Velamparambil, and J. S. Zhao. Fast integral equation solvers in computational electromagnetics of complex structures. Engineering Analysis with Boundary Elements, 27(8):803–823, 2003.Google Scholar
  55. CDNQ12.
    T. Cluzeau, V. Dolean, F. Nataf, and A. Quadrat. Symbolic preconditioning techniques for linear systems of partial differential equations. In R. Bank, R. Kornhuber, and O. Widlund, editors, Domain Decomposition Methods in Science and Engineering XX, Lecture Notes in Computational Science and Engineering. Springer-Verlag, 2012. to appear; http://hal.archives-ouvertes.fr/hal-00664092.
  56. CDS03.
    X.-C. Cai, M. Dryja, and M. Sarkis. Restricted additive Schwarz preconditioners with harmonic overlap for symmetric positive definite linear systems. SIAM J. Numer. Anal., 41(4):1209–1231, 2003.Google Scholar
  57. CFH+03.
    T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge, and P. S. Vassilevski. Spectral amge (ρamge). SIAM J. Sci. Comput, 25(1):1–26, 2003.Google Scholar
  58. CGH10.
    C.-C. Chu, I. G. Graham, and T.-Y. Hou. A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comp., 79:1915–1955, 2010.Google Scholar
  59. CGR99.
    H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys., 155(2):468–498, 1999.Google Scholar
  60. CGSS00.
    K. A. Cliffe, I. G. Graham, R. Scheichl, and L. Stals. Parallel computation of flow in heterogeneous media modelled by mixed finite elements. J. Comput. Phys., 164(2):258–282, 2000.Google Scholar
  61. CH02.
    Z. Chen and T.Y. Hou. A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp., 72:541–576, 2002.Google Scholar
  62. CHB09.
    J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Towards Integration of CAD and FEA. John Wiley & Sons, 2009.Google Scholar
  63. Chu93.
    S.-K. Chua. Weighted Sobolev inequalities on domains satisfying the chain condition. Proc. Amer. Math. Soc., 117(2):449–457, 1993.Google Scholar
  64. Cia87.
    P. G. Ciarlet. The finite element method for elliptic problems, volume 4 of Studies in Mathematics and its Applications. North-Holland, Amsterdam, 1987.Google Scholar
  65. CKL98.
    C. Carstensen, M. Kuhn, and U. Langer. Fast parallel solvers for symmetric boundary element domain decomposition equations. Numer. Math., 79:321–347, 1998.Google Scholar
  66. Clé75.
    P. Clément. Approximation by finite element functions using local regularization. RAIRO Analyse Numérique, 9(R-2):77–84, 1975.Google Scholar
  67. CM94.
    T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta Numerica, pages 61–143, 1994.Google Scholar
  68. Cos87.
    M. Costabel. Symmetric methods for the coupling of finite elements and boundary elements. In C. A. Brebbia, W. L. Wendland, and G. Kuhn, editors, Boundary Elements IX, pages 411–420. Springer-Verlag, Berlin, 1987.Google Scholar
  69. Cos88.
    M. Costabel. Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal., 19(3):613–626, 1988.Google Scholar
  70. Cos07.
    M. Costabel. Some historical remarks on the positivity of boundary integral operators. In M. Schanz and O. Steinbach, editors, Boundary Element Analysis – Mathematical Aspects and Applications, volume 29 of Lecture Notes in Applied and Computational Mechanics, pages 1–27. Springer-Verlag, Berlin, 2007.Google Scholar
  71. Cro03.
    J. M. Cros. A preconditioner for the Schur complement domain decomposition method. In I. Herrera, D. E. Keyes, and O. B. Widlund, editors, Domain Decomposition Methods in Science and Engineering. National Autonomous University of Mexico (UNAM), México, 2003. http://www.ddm.org/DD14/.
  72. CS90.
    M. Costabel and E. P. Stephan. Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J. Numer. Anal., 27(5):1212–1226, 1990.Google Scholar
  73. CW06.
    S.-K. Chua and R. L. Wheeden. Estimates of best constants for weighted Poincaré inequalities on convex domains. Proc. London Math. Soc. (3), 93(1):197–226, 2006.Google Scholar
  74. Dah77.
    B. E. J. Dahlberg. Estimates of harmonic measure. Arch. Rational Mech. Anal., 65(3):275–288, 1977.Google Scholar
  75. Dau88.
    M. Dauge. Elliptic boundary value problems on corner domains. Springer-Verlag, New York, 1988.Google Scholar
  76. De 91.
    Y.-H. De Roeck. Résolution sur Ordinateurs Multi-Processeurs de Problème d’Elasticité par Décomposition des Domaines. PhD thesis, Université Paris IX Dauphine, 1991.Google Scholar
  77. DE12.
    D. A. Di Pietro and A. Ern. Mathematical Aspects of Discontinuous Galerkin Methods, volume 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg, 2012.Google Scholar
  78. Dem07.
    L. Demkowicz. Computing with hp-adaptive finite elements. Vol. 1. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL, 2007.Google Scholar
  79. DGS07.
    M. Dryja, J. Galvis, and M. Sarkis. BDDC methods for discontinuous Galerkin discretization of elliptic problems. J. Complexity, 23(4-6):715–739, 2007.Google Scholar
  80. DGS08.
    M. Dryja, J. Galvis, and M. Sarkis. Balancing domain decomposition methods for discontinuous Galerkin discretization. In Domain decomposition methods in science and engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering, pages 271–278. Springer, Berlin, 2008.Google Scholar
  81. DGS11.
    M. Dryja, J. Galvis, and M. Sarkis. N-N solvers for a DG discretization for geometrically nonconforming substructures and discontinuous coefficients. In Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering XIX, volume 78 of Lecture Notes in Computational Science and Engineering, pages 27–38. Springer-Verlag, Berlin, 2011.Google Scholar
  82. DGS12.
    M. Dryja, J. Galvis, and M. Sarkis. Neumann-Neumann methods for a DG discretization of elliptic problems with discontinuous coefficients on geometrically nonconforming substructures. Numerical Methods for Partial Differential Equations, 28(4):1194–1226, 2012.Google Scholar
  83. DHK+05.
    Z. Dostál, D. Horák, R. Kučera, V. Vondrák, J. Haslinger, J. Dobiáš, and S. Pták. FETI based algorithms for contact problems: scalability, large displacements and 3D Coulomb friction. Comput. Methods Appl. Mech. Engrg., 194(2–5):395–409, 2005.Google Scholar
  84. DHK06.
    Z. Dostál, D. Horák, and R. Kučera. Total FETI – An easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun. Numer. Methods Eng., 22(12):1155–1162, 2006.Google Scholar
  85. DHL03.
    C. C. Douglas, G. Haase, and U. Langer. A Tutorial on Elliptic PDE Solvers and Their Parallelization. SIAM, Philadelphia, 2003.Google Scholar
  86. DKV+10.
    Z. Dostál, T. Kozubek, V. Vondrák, T. Brzobohatý, and A. Markopoulos. Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. Internat. J. Numer. Methods Engrg., 82(11):1384–1405, 2010.Google Scholar
  87. DKW08a.
    C. R. Dohrmann, A. Klawonn, and O. B. Widlund. Domain decomposition for less regular subdomains: Overlapping Schwarz in two dimensions. SIAM J. Numer. Anal., 46(4):2153–2168, 2008.Google Scholar
  88. DKW08b.
    C. R. Dohrmann, A. Klawonn, and O. B. Widlund. Extending theory for domain decomposition algorithms to irregular subdomains. In U. Langer, M. Discacciati, O. Widlund, and W. Zulehner, editors, Domain Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture Notes in Computational Engineering and Science, pages 255–261. Springer-Verlag, Berlin, 2008.Google Scholar
  89. DL91.
    Y.-H. De Roeck and P. Le Tallec. Analysis and test of a local domain decomposition preconditioner. In R. Glowinski, Y. A. Kuznetsov, G. A. Meurant, J. Périaux, and O. Widlund, editors, Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 112–128. SIAM, Philadelphia, PA, 1991. http://www.ddm.org/DD04/.
  90. DNR08.
    V. Dolean, F. Nataf, and G. Rapin. How to use the Smith factorization for domain decomposition methods applied to the Stokes equation. In Domain decomposition methods in science and engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering, pages 477–848. Springer, Berlin, 2008.Google Scholar
  91. DNR09.
    V. Dolean, F. Nataf, and G. Rapin. Deriving a new domain decomposition method for the Stokes equation using the Smith factorization. Math. Comp., 78:789–814, 2009.Google Scholar
  92. DNSS11.
    V. Dolean, F. Nataf, R. Scheichl, and N. Spillane. Analysis of a two-level schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Preprint HAL-00586246, Hyper Articles en Ligne, 2011. submitted.Google Scholar
  93. Doh03.
    C. R. Dohrmann. A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput., 25(1):246–258, 2003.Google Scholar
  94. Doh07.
    C. R. Dohrmann. An approximate BDDC preconditioner. Numer. Linear Algebra Appl., 14(2):149–168, 2007.Google Scholar
  95. DORH89.
    L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy. Toward a universal h-p adaptive finite element strategy. I. Constrained approximation and data structure. Comput. Methods Appl. Mech. Engrg., 77(1-2):79–112, 1989.Google Scholar
  96. Dry87.
    M. Dryja. A method of domain decomposition for 3-D finite element problems. In R. Glowinski, G. H. Golub, G. A. Meurant, and J. Périaux, editors, First International Symposium on Domain Decomposition methods for Partial Differential Equations, pages 43–61. SIAM, Philadelphia, PA, 1987. http://www.ddm.org/DD01/.
  97. DS80.
    T. Dupont and R. Scott. Polynomial approximation of functions in Sobolev spaces. Math. Comp., 34(150):441–463, 1980.Google Scholar
  98. DS11.
    M. Dryja and M. Sarkis. Technical tools for boundary layers and applications to heterogeneous coefficients. In Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, editors, Decomposition Methods in Science and Engineering XIX, volume 78 of Lecture Notes in Computational Science and Engineering, pages 205–212. Springer-Verlag, Berlin, 2011.Google Scholar
  99. DSW94.
    M. Dryja, B. F. Smith, and O. B. Widlund. Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions. SIAM J. Numer. Anal., 31(6):1662–1694, 1994.Google Scholar
  100. DSW96.
    M. Dryja, M. V. Sarkis, and O. B. Widlund. Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math., 72:313–348, 1996.Google Scholar
  101. DW94.
    M. Dryja and O. B. Widlund. Domain decomposition algorithms with small overlap. SIAM J. Sci. Comput., 15(3):604–620, 1994.Google Scholar
  102. DW95.
    M. Dryja and O. B. Widlund. Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems. Comm. Pure Appl. Math., 48(2):121–155, 1995.Google Scholar
  103. DW06.
    L. T. Dechevski and W. L. Wendland. On the Bramble-Hilbert lemma. II. An improved estimate of the embedding constant. Int. J. Pure Appl. Math., 33(4):433–464, 2006.Google Scholar
  104. DW09.
    C. R. Dohrmann and O. B. Widlund. An overlapping schwarz algorithm for almost incompressible elasticity. SIAM J. Numer. Anal., 47(4):2897–2923, 2009.Google Scholar
  105. DW10.
    C. R. Dohrmann and O. B. Widlund. Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity. Internat. J. Numer. Methods Engrg., 82:157–183, 2010.Google Scholar
  106. DW12a.
    C. R. Dohrmann and O. B. Widlund. An iterative substructuring algorithm for two-dimensional problems in H(curl). SIAM J. Numer. Anal., 50(3):1004–1028, 2012.Google Scholar
  107. DW12b.
    C. R. Dohrmann and O. B. Widlund. Some recent tools and a BDDC algorithm for 3D problems in H(curl). In R. Bank, R. Kornhuber, and O. Widlund, editors, Domain Decomposition Methods in Science and Engineering XX, Lecture Notes in Computational Science and Engineering. Springer-Verlag, 2012. to appear; http://www.cs.nyu.edu/cs/faculty/widlund/Dohrmann-plenary-final.pdf.
  108. EGLW12.
    Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems. Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anal., 46(5):1175–1199, 2012.Google Scholar
  109. EH09.
    Y. Efendiev and T.Y. Hou. Multiscale Finite Element Methods: Theory and Applications. Springer-Verlag, New York, 2009.Google Scholar
  110. EHN96.
    H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.Google Scholar
  111. Eib06.
    T. Eibner. Adaptive und randkonzentrierte FEM. PhD thesis, TU Chemnitz, Chemnitz, Germany, June 2006.Google Scholar
  112. EM06.
    T. Eibner and J. M. Melenk. A local error analysis of the boundary concentrated FEM. IMA J. Numer. Anal., 26(4):752–778, 2006.Google Scholar
  113. EM07a.
    T. Eibner and J. M. Melenk. An adaptive strategy for hp-FEM based on testing for analyticity. Comput. Meth., 39(5):575–595, 2007.Google Scholar
  114. EM07b.
    T. Eibner and J. M. Melenk. Multilevel preconditioning for the boundary concentrated hp-FEM. Comp. Methods Appl. Mech. Engrg., 196(37-40):3713–3725, 2007.Google Scholar
  115. Eva98.
    L. C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. AMS, Providence, RI, 1998.Google Scholar
  116. FATL05.
    C. Farhat, P. Avery, R. Tezaur, and J. Li. FETI-DPH: a dual-primal domain decomposition method for acoustic scattering. J. Comput. Acoust., 13(3):499–524, 2005.Google Scholar
  117. FCM95.
    C. Farhat, P. Chen, and J. Mandel. A scalable Lagrange multiplier based domain decomposition method for time-dependent problems. Int. J. Numer. Meth. Engng., 38(22):3831–3853, 1995.Google Scholar
  118. FCMR98.
    C. Farhat, P. Chen, J. Mandel, and F.-X. Roux. The two-level FETI method part II: Extensions to shell problems, parallel implementation and performance results. Comput. Methods Appl. Mech. Engrg., 155(1–2):153–179, 1998.Google Scholar
  119. FCR94.
    C. Farhat, L. Crivelli, and F.-X. Roux. Extending substructure based iterative solvers to multiple load and repeated analyses. Comput. Meth. Appl. Mech. Engng., 117:195–200, 1994.Google Scholar
  120. FCRR98.
    C. Farhat, P.-S. Chen, F. Risler, and F.-X. Roux. A unified framework for accelerating the convergence of iterative substructuring methods with Lagrange multipliers. Int. J. Numer. Meth. Engng., 42(2):257–288, 1998.Google Scholar
  121. FF60.
    H. Federer and W. H. Fleming. Normal and integral currents. Ann. of Math., 2:482–520, 1960.Google Scholar
  122. Fie73.
    M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23(98):298–305, 1973.Google Scholar
  123. FKS82.
    E. B. Fabes, C. E. Kenig, and R. P. Serapioni. The local regulartity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations, 7(1):77–116, 1982.Google Scholar
  124. FLL+01.
    C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen. FETI-DP: A dual-primal unified FETI method I: A faster alternative to the two-level FETI method. Internat. J. Numer. Methods Engrg., 50(7):1523–1544, 2001.Google Scholar
  125. FLLA05.
    C. Farhat, J. Li, M. Lesoinne, and P. Avery. A FETI method for a class of indefinite or complex second- or fourth-order problems. In R. Kornhuber, R. H. W. Hoppe, D. E. Keyes, J. Periaux, O. Pironneau, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering, volume 40 of Lecture Notes in Computational Science and Engineering, pages 19–33. Springer-Verlag, Berlin, 2005. http://www.ddm.org/DD15/.
  126. FLP00.
    C. Farhat, M. Lesoinne, and K. Pierson. A scalable dual-primal domain decomposition method. Numer. Linear Algebra Appl., 7(7–8):687–714, 2000.Google Scholar
  127. FM97.
    C. Farhat and J. Mandel. Scalable substructuring by lagrange multipliers in theory and practice. In P. Bjørstad, M. Espedal, and D. Keyes, editors, Ninth International Conference: Domain Decomposition Methods in Science and Engineering, 1997. http://www.ddm.org/DD9/Farhat.pdf.
  128. FM98.
    C. Farhat and J. Mandel. The two-level FETI method for static and dynamic plate problems part I: An optimal iterative solver for biharmonic systems. Comput. Methods Appl. Mech. Engrg., 155(1–2):129–151, 1998.Google Scholar
  129. FML00a.
    C. Farhat, A. Macedo, and M. Lesoinne. A two-level domain decomposition method for the iterative solution of high-frequency exterior Helmholtz problems. Numer. Math., 85(2):283–303, 2000.Google Scholar
  130. FML+00b.
    C. Farhat, A. Macedo, M. Lesoinne, F.-X. Roux, F. Magoulès, and A. de La Bourdonnaye. Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems. Comput. Methods Appl. Mech. Engrg., 184:213–240, 2000.Google Scholar
  131. FMR94.
    C. Farhat, J. Mandel, and F.-X. Roux. Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Engrg., 115:365–385, 1994.Google Scholar
  132. FMT99.
    C. Farhat, A. Macedo, and R. Tezaur. FETI-H: A scalable domain decomposition method for high frequency exterior Helmholtz problems. In C.-H. Lai, P. E. Bjørstad, M. Cross, and O. B. Widlund, editors, Domain Decomposition Methods in Science and Engineering: Eleventh International Conference London, UK, pages 231–241, 1999. http://www.ddm.org/DD11/Farhat.pdf.
  133. FP03.
    Y. Fragakis and M. Papadrakakis. The mosaic of high performance domain decomposition methods for structural methanics: Formulation, interrelation and numerical efficiency of primal and dual methods. Comput. Methods Appl. Mech. Engrg., 192:3799–3830, 2003.Google Scholar
  134. FP04.
    Y. Fragakis and M. Papadrakakis. The mosaic of high performance domain decomposition methods for structural methanics – Part II: Formulation enhancements, multiple right-hand sides and implicit dynamics. Comput. Methods Appl. Mech. Engrg., 193:4611–4662, 2004.Google Scholar
  135. FR91.
    C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Meth. Engrg., 32(6):1205–1227, 1991.Google Scholar
  136. FR92.
    C. Farhat and F.-X. Roux. An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM J. Sci. and Stat. Comput., 13(1):379–396, 1992.Google Scholar
  137. FR94.
    C. Farhat and F.-X. Roux. Implicit parallel processing in structural mechanics. In J. T. Oden, editor, Computational Mechanics Advances, volume 2, pages 1–124. North-Holland, Amsterdam, 1994.Google Scholar
  138. FS97.
    S. A. Funken and E. P. Stephan. The BPX preconditioner for the single layer potential operator. Appl. Anal., 67(3–4):327–340, 1997.Google Scholar
  139. GE10a.
    J. Galvis and Y. Efendiev. Domain decomposition preconditioners for multiscale flows in high contrast media. Multiscale Model. Simul., 8(4):1461–1483, 2010.Google Scholar
  140. GE10b.
    J. Galvis and Y. Efendiev. Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces. Multiscale Model. Simul., 8(5):1621–1644, 2010.Google Scholar
  141. GH99.
    I. G. Graham and M. J. Hagger. Unstructured additive Schwarz-conjugate gradient method for elliptic problems with highly discontinuous coefficients. SIAM J. Sci. Comput., 20(6):2041–2066, 1999.Google Scholar
  142. GHLS12.
    I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl (eds.). Numerical analysis of multiscale problems. Selected papers based on the presentations at the 91st London Mathematical Society symposium, Durham, UK, July 5–15, 2010, volume 83 of Lecture Notes in Computational Science and Engineering. Springer, Berlin, 2012.Google Scholar
  143. GKM08.
    I. Georgiev, J. Kraus, and S. Margenov. On the robustness of hierarchical multilevel splittings for discontinuous galerkin rotated bilinear fe problems. RICAM-Report 2008-09, Johann Radon Institut for Computational and Applied Mathematics, Linz, 2008. http://www.ricam.oeaw.ac.at/publications/reports/08/rep08-09.pdf.
  144. GKR12.
    S. Gippert, A. Klawonn, and O. Rheinbach. Analysis of FETI-DP and BDDC algorithms for a linear elasticity problems in 3D with compressible and almost incompressible material components. SIAM J. Numer. Anal., 2012. accepted for publication; http://www.uni-due.de/numerik/publications.shtml.
  145. GL81.
    A. George and J. W. H. Liu. Computer solution of large sparse positive definite systems. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1981.Google Scholar
  146. GLS07.
    I. G. Graham, P. O. Lechner, and R. Scheichl. Domain decomposition for multiscale PDEs. Numer. Math., 106(4):589–626, 2007.Google Scholar
  147. GR86.
    V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, New York, 1986.Google Scholar
  148. Gri85.
    P. Grisvard. Elliptic Problems on Nonsmooth Domains. Pitman, Boston, London, Melbourne, 1985.Google Scholar
  149. Gri92.
    P. Grisvard. Singularities in boundary value problems, volume 22 of RMA. Masson, Paris, 1992.Google Scholar
  150. GS07.
    I. G. Graham and R. Scheichl. Robust domain decomposition algorithms for multiscale PDEs. Numerical Methods for Partial Differential Equations, 23:859–878, 2007.Google Scholar
  151. GV96.
    G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.Google Scholar
  152. GW88.
    R. Glowinski and M. F. Wheeler. Domain decomposition and mixed finite element methods for elliptic problems. In R. Glowinski, G. H. Golub, G. A. Meurant, and J. Périaux, editors, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 144–172. SIAM, Philadelphia, PA, 1988. http://www.ddm.org/DD01/.
  153. Haa99.
    G. Haase. Parallelisierung numerischer Algorithmen für partielle Differentialgleichungen. Teubner, Stuttgart, 1999.Google Scholar
  154. Hac99.
    W. Hackbusch. A sparse matrix arithmetic based on \(\mathcal{H}\)-matrices. Computing, 62(2):89–108, 1999.Google Scholar
  155. Hac03.
    W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, Berlin, second edition, 2003.Google Scholar
  156. Haj01.
    P. Hajłasz. Sobolev inequalities, truncation method, and John domains. In Papers on Analysis, pages 109–126. Report Univ. Jyväkylä, Dep. Math. Stat. 83, Jyväkylä, 2001.Google Scholar
  157. HCB05.
    T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg., 194(39-41):4135–4195, 2005.Google Scholar
  158. Heu01.
    N. Heuer. Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math., 88(3):485–511, 2001.Google Scholar
  159. HFMQ98.
    T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy. The variational multiscale method – a paradigm for computational mechanics. Comput. Meth. Appl. Mech. Engrg., 166:3–24, 1998.Google Scholar
  160. HHKL97.
    G. Haase, B. Heise, M. Kuhn, and U. Langer. Adaptive domain decomposition methods for finite elements and boundary elements. In W. L. Wendland, editor, Boundary Element Topics, pages 121–147. Springer-Verlag, Berlin, 1997.Google Scholar
  161. Hil87.
    E. Hille. Analytic Function Theory, volume II. Chelsea Publishing Company, New York, second edition, 1987.Google Scholar
  162. Hip02.
    R. Hiptmair. Symmetric coupling for eddy current problems. SIAM J. Numer. Anal., 40:41–65, 2002.Google Scholar
  163. HK00.
    W. Hackbusch and B. N. Khoromskij. A sparse \(\mathcal{H}\)-matrix arithmetic: II. Approximation to multi-dimensional problems. Computing, 64(1):21–47, 2000.Google Scholar
  164. HKD04.
    J. Haslinger, R. Kučera, and Z. Dostál. An algorithm for the numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math., pages 164–165, 2004.Google Scholar
  165. HL92.
    G. Haase and U. Langer. The non-overlapping domain decomposition multiplicative Schwarz method. International Journal of Computer Mathematics, 44:223–242, 1992.Google Scholar
  166. HLM91a.
    G. Haase, U. Langer, and A. Meyer. The approximate Dirichlet decomposition method. part I: An algebraic approach. Computing, 47:137–151, 1991.Google Scholar
  167. HLM91b.
    G. Haase, U. Langer, and A. Meyer. The approximate Dirichlet decomposition method. part II: Application to 2nd-order elliptic B.V.P.s. Computing, 47:153–167, 1991.Google Scholar
  168. HLP10.
    C. Hofreither, U. Langer, and C. Pechstein. Analysis of a non-standard finite element method based on boundary integral operators. Electron. Trans. Numer. Anal., 37:413–436, 2010.Google Scholar
  169. HN89.
    W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math., 54(4):463–491, 1989.Google Scholar
  170. Hof11.
    C. Hofreither. l 2 error estimates for a nonstandard finite element method on polyhedral meshes. J. Numer. Math., 19(1):27–39, 2011.Google Scholar
  171. HS98.
    N. Heuer and E. P. Stephan. Iterative substructuring for hypersingular integral equations in \({\mathbf{R}}^{3}\). SIAM J. Sci. Comput., 20(2):739–749, 1998.Google Scholar
  172. HS01.
    N. Heuer and E. P. Stephan. An additive Schwarz method for the h-p version of the boundary element method for hypersingular integral equations in \({\mathbf{R}}^{3}\). IMA J. Numer. Anal., 21(1):265–283, 2001.Google Scholar
  173. HS05.
    Paul Houston and Endre Süli. A note on the design of hp-adaptive finite element methods for elliptic partial differential equations. Comput. Methods Appl. Mech. Engrg., 194(2-5):229–243, 2005.Google Scholar
  174. HS07.
    T. J. R Hughes and G. Sangalli. Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, stabilized methods. SIAM J. Num. Anal., 45:539–557, 2007.Google Scholar
  175. HSW00.
    G. C. Hsiao, O. Steinbach, and W. L. Wendland. Domain decomposition methods via boundary integral equations. J. Comput. Appl. Math., pages 521–537, 2000.Google Scholar
  176. HW91.
    G. C. Hsiao and W. L. Wendland. Domain decomposition in boundary element methods. In R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Périaux, and O. B. Widlund, editors, Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 41–49. SIAM, Philadelphia, PA, 1991. http://www.ddm.org/DD04/.
  177. HW08a.
    J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, volume 54 of Texts in Applied Mathematics. Springer, New York, 2008.Google Scholar
  178. HW08b.
    G. C. Hsiao and W. L. Wendland. Boundary Integral Equations, volume 164 of Applied Mathematical Sciences. Springer-Verlag, Berlin, 2008.Google Scholar
  179. IM95.
    I. C. F. Ipsen and C. D. Meyer. The angle between complementary subspaces. Amer. Math. Monthly, 102(10):904–911, 1995.Google Scholar
  180. IN85.
    T. Iwaniec and C. A. Nolder. Hardy-Littlewood inequality for quasiregular mappings in certain domains in \({\mathbb{R}}^{n}\). Ann. Acad. Sci. Fenn. Ser. A I Math., 10:267–282, 1985.Google Scholar
  181. Jar10.
    M. Jarošová. Effective implementation of some algorithms for solving quadratic programming problems. Doctoral dissertation, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 2010. http://am.vsb.cz/theses/jarosova_phd.pdf.
  182. JKR10.
    M. Jarošová, A. Klawonn, and O. Rheinbach. Projector preconditioning and transformation of basis in FETI-DP algorithms for contact problems. Math. Comp. Simulation, 2010. to appear, published online Dec. 2010, http://dx.doi.org/10.1016/j.matcom.2010.10.031.
  183. JN80.
    C. Johnson and J. C. Nédélec. On coupling of boundary integral and finite element methods. Math. Comp., 35(152):1063–1079, 1980.Google Scholar
  184. Jon81.
    P. W. Jones. Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math., 147:71–88, 1981.Google Scholar
  185. Kam00.
    C. Kamath. The FETI level 1 method: theory and implementation. Technical Report UCRLID-138075, Lawrence Livermore National Laboratory, CA, 2000.Google Scholar
  186. KDW08.
    H. H. Kim, M. Dryja, and O. B. Widlund. A BDDC method for mortar discretizations using a transformation of basis. SIAM J. Numer. Anal., 47(1):136–157, 2008.Google Scholar
  187. Kho08a.
    B. N. Khoromskij. Fast tensor approximation of multi-dimensional convolution with linear scaling. Preprint 36/2008, MPI MIS, Leipzig, 2008.Google Scholar
  188. Kho08b.
    B. N. Khoromskij. On tensor approximation of green iterations for kohn-sham equations. Comput. Visual Sci., 11(4–6), 2008.Google Scholar
  189. Kim07.
    H. H. Kim. A FETI-DP preconditioner for mortar methods in three dimensions. Electron. Trans. Numer. Anal., 26:103–120, 2007.Google Scholar
  190. Kim08a.
    H. H. Kim. A BDDC algorithm for mortar discretization of elasticity problems. SIAM J. Numer. Anal., 46(4):2090–2111, 2008.Google Scholar
  191. Kim08b.
    H. H. Kim. Domain decomposition algorithms for mortar discretizations. In Domain decomposition methods in science and engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering, pages 81–92. Springer, Berlin, 2008.Google Scholar
  192. Kim08c.
    H. H. Kim. A FETI-DP formulation of three dimensional elasticity problems with mortar discretization. SIAM J. Numer. Anal., 46(5):2346–2370, 2008.Google Scholar
  193. KK98.
    G. Karypis and V. Kumar. METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices; Version 4.0. University of Minnesota, Department of Computer Science / Army HPC Research Center Minneapolis, MN 55455, USA, September 1998. http://people.scs.fsu.edu/~burkardt/pdf/metis.pdf.
  194. KL04.
    V. G. Korneev and U. Langer. Domain decomposition and preconditioning. In E. Stein, R. de Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics, volume 1, chapter 22. John Wiley & Sons, 2004.Google Scholar
  195. KL05.
    H. H. Kim and C.-O. Lee. A preconditioner for the FETI-DP formulation with mortar methods in two dimensions. SIAM J. Numer. Anal., 42(5):2159–2175, 2005.Google Scholar
  196. KL10.
    H. H. Kim and C.-O. Lee. A FETI-DP formulation for the three-dimensional Stokes problem without primal pressure unknowns. SIAM J. Sci. Comput., 32(6):3301–3322, 2010.Google Scholar
  197. KLP10a.
    H. H. Kim, C.-O. Lee, and E.-H. Park. A FETI-DP formulation for the Stokes problem without primal pressure components. SIAM J. Numer. Anal., 47(6):4142–4162, 2010.Google Scholar
  198. KLP10b.
    H. H. Kim, C.-O. Lee, and E.-H. Park. On the selection of primal unknowns for a FETI-DP formulation of the Stokes problem in two dimensions. Comput. Math. Appl., 60(12):3047–3057, 2010.Google Scholar
  199. KM03.
    B. N. Khoromskij and J. M. Melenk. Boundary concentrated finite element methods. SIAM J. Numer. Anal., 41(1):1–36, 2003.Google Scholar
  200. KM07.
    J. Kraus and S. Margenov. Multilevel methods for anisotropic elliptic problems. In Lectures on Advanced Computational Methods in Mechanics, volume 1 of Radon Series on Computational and Applied Mathematics. Walter de Gruyter, Berlin, New York, 2007.Google Scholar
  201. KNRV11.
    A. Klawonn, P. Neff, O. Rheinbach, and S. Vanis. FETI-DP domain decomposition methods for elasticity with structural changes: P-elasticity. ESAIM Math. Model. Numer. Anal., 45:563–602, 2011.Google Scholar
  202. Kny01.
    A. V. Knyazev. Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput., 23(2):517–541, 2001.Google Scholar
  203. KPJT12.
    S. K. Kleiss, C. Pechstein, B. Jüttler, and S. Tomar. IETI – isogeometric tearing and interconnecting. RICAM Report 2012-01, Johann Radon Institute of Computational and Applied Mathematics, Linz, Austria, 2012. accepted for publication in Comp. Methods Appl. Mech. Engrg., http://www.ricam.oeaw.ac.at/publications/reports/12/rep12-01.pdf.
  204. KPR08.
    A. Klawonn, L. Pavarino, and O. Rheinbach. Spectral element FETI-DP and BDDC preconditioners with multi-element subdomains. Comput. Meth. Appl. Mech. Engrg., 198(3–4):511–523, 2008.Google Scholar
  205. KR06.
    A. Klawonn and O. Rheinbach. A parallel implementation of dual-primal FETI methods for three dimensional linear elasticity using a transformation of basis. SIAM J. Sci. Comput., 28(5):1886–1906, 2006.Google Scholar
  206. KR07a.
    A. Klawonn and O. Rheinbach. Inexact FETI-DP methods. Inter. J. Numer. Methods Engrg., 69:284–307, 2007.Google Scholar
  207. KR07b.
    A. Klawonn and O. Rheinbach. Robust FETI-DP methods for heterogeneous three dimensional elasticity problems. Comput. Methods Appl. Mech. Engrg., 196:1400–1414, 2007.Google Scholar
  208. KR07c.
    A. Klawonn and O. Rheinbach. Some computational results for robust FETI-DP methods applied to heterogeneous elasticity problems in 3D. In D. Keyes and O. Widlund, editors, Domain Decomposition Methods in Sciences and Engineering XVI, volume 55 of Lecture Notes in Computational Science and Engineering, pages 391–398. Springer-Verlag, Heidelberg, 2007.Google Scholar
  209. KR10.
    A. Klawonn and O. Rheinbach. Highly scalable parallel domain decomposition methods with an application to biomechanics. Z.Angew. Math. Mech., 90(1):5–32, 2010.Google Scholar
  210. KR12.
    A. Klawonn and O. Rheinbach. Deflation, projector preconditioning, and balancing in iterative substructuring methods: connections and new results. SIAM J. Sci. Comput., 34(1):A459–A484, 2012.Google Scholar
  211. Kra11.
    J. Kraus. Additive schur complement approximation and application to multilevel preconditioning. RICAM Report 2011-22, Johann Radon Institute of Computational and Applied Mathematics, Linz, Austria, 2011. submitted, http://www.ricam.oeaw.ac.at/publications/reports/12/rep11-22.pdf.
  212. KRW07.
    A. Klawonn, O. Rheinbach, and B. Wohlmuth. Dual-primal iterative substructuring for almost incompressible elasticity. In D. Keyes and O. Widlund, editors, Domain Decomposition Methods in Sciences and Engineering XVI, volume 55 of Lecture Notes in Computational Science and Engineering, pages 399–406. Springer-Verlag, Heidelberg, 2007.Google Scholar
  213. KRW08.
    A. Klawonn, O. Rheinbach, and O. B. Widlund. An analysis of a FETI-DP algorithm on irregular subdomains in the plane. SIAM J. Numer. Anal., 46(5):2484–2504, 2008.Google Scholar
  214. KS99.
    G. Karniadakis and S. Sherwin. Spectral/hp Element Methods for CFD. Oxford University Press, Oxford, 1999.Google Scholar
  215. KS02.
    M. Kuhn and O. Steinbach. Symmetric coupling of finite and boundary element for exterior magnetic field problems. Math. Methods Appl. Sci., 25:357–371, 2002.Google Scholar
  216. KT09.
    H. H. Kim and X. Tu. A three-level BDDC algorithm for mortar discretizations. SIAM J. Numer. Anal., 47(2):1576–1600, 2009.Google Scholar
  217. KW00.
    A. Klawonn and O. B. Widlund. A domain decomposition method with Lagrange multipliers and inexact solvers for linear elasticity. SIAM J. Sci. Comput., 22(4):1199–1219, 2000.Google Scholar
  218. KW01.
    A. Klawonn and O. B. Widlund. FETI and Neumann-Neumann iterative substructuring methods: Connections and new results. Comm. Pure Appl. Math., 54(1):57–90, 2001.Google Scholar
  219. KW05.
    A. Klawonn and O. B. Widlund. Selecting constraints in dual-primal FETI methods for elasticity in three dimensions. In R. Kornhuber, R. H. W. Hoppe, D. E. Keyes, J. Periaux, O. Pironneau, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering, volume 40 of Lecture Notes in Computational Science and Engineering, pages 67–81. Springer-Verlag, Berlin, 2005. http://www.ddm.org/DD15/.
  220. KW06.
    A. Klawonn and O. B. Widlund. Dual-primal FETI methods for linear elasticity. Comm. Pure Appl. Math., 59(11):1523–1572, 2006.Google Scholar
  221. KWD02a.
    A. Klawonn, O. B. Widlund, and M. Dryja. Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal., 40(1):159–179, 2002.Google Scholar
  222. KWD02b.
    A. Klawonn, O. B. Widlund, and M. Dryja. Dual-primal FETI methods with face constraints. In L. Pavarino and A. Toselli, editors, Recent Developments in Domain Decomposition Methods, volume 23 of Lecture Notes in Computational Science and Engineering, pages 27–40. Springer-Verlag, Berlin, 2002.Google Scholar
  223. Lan94.
    U. Langer. Parallel iterative solution of symmetric coupled FE/BE-equations via domain decomposition. Contemporary Mathematics, 157:335–344, 1994.Google Scholar
  224. Le 94.
    P. Le Tallec. Domain decomposition methods in computational mechanics. In J. T. Oden, editor, Computational Mechanics Advances, volume 1, pages 121–220. North-Holland, 1994.Google Scholar
  225. Les03.
    M. Lesoinne. A FETI-DP corner selection algorithm for three-dimensional problems. In I. Herrera, D. E. Keyes, O. Widlund, and R. Yates, editors, Proceedings of the 14th International Conference on Domain Decomposition Methods, pages 233–240. Mexico, 2003. http://www.ddm.org/DD14/lesoinne.pdf.
  226. Li05.
    J. Li. A dual-primal FETI method for incompressible stokes equations. Numer. Math., 102(2):257–275, 2005.Google Scholar
  227. Lie06.
    M. Liebmann. A user friendly toolbox for parallel PDE-solvers. Institut for Mathematics and Scientific Computing, Karl-Franzens-Universität Graz, Austria, 2006. http://paralleltoolbox.sourceforge.net/paralleltoolbox.pdf.
  228. LM72.
    J. L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications, volume I. Springer-Verlag, Berlin, 1972.Google Scholar
  229. LOSZ07a.
    U. Langer, G. Of, O. Steinbach, and W. Zulehner. Inexact data-sparse boundary element tearing and interconnecting methods. SIAM J. Sci. Comp., 29:290–314, 2007.Google Scholar
  230. LOSZ07b.
    U. Langer, G. Of, O. Steinbach, and W. Zulehner. Inexact fast multipole boundary element tearing and interconnecting methods. In D. Keyes and O. Widlund, editors, Domain Decomposition Methods in Sciences and Engineering XVI, volume 55 of Lecture Notes in Computational Science and Engineering, pages 405–412. Springer-Verlag, Heidelberg, 2007.Google Scholar
  231. LP98.
    M. Lesoinne and K. Pierson. An efficient FETI implementation on distributed and shared memory machines with independent number of subdomains and processors. In J. Mandel, C. Farhat, and X. Cai, editors, Domain Decomposition Methods 10. Proceedings of the 10th International Conference held in Boulder, CO, August 10–14, 1997, volume 218 of Contemporary Mathematics, pages 318–324. AMS, Providence, RI, 1998. http://www.ddm.org/DD10/.
  232. LP06.
    U. Langer and C. Pechstein. Coupled finite and boundary element tearing and interconnecting solvers for nonlinear potential problems. ZAMM Z. Angew. Math. Mech., 86(12), 2006.Google Scholar
  233. LP07.
    U. Langer and C. Pechstein. Coupled FETI/BETI solvers for nonlinear potential problems in (un)bounded domains. In G. Ciuprina and D. Ioan, editors, Scientific Computing in Electrical Engineering, volume 11 of Mathematics in Industry: The European Consortium for Mathematics in Industry, pages 371–377. Springer-Verlag, Berlin, 2007.Google Scholar
  234. LP08.
    U. Langer and C. Pechstein. All-floating coupled data-sparse boundary and interface-concentrated finite element tearing and interconnecting methods. Computing and Visualization in Science, 11(4-6):307–317, 2008.Google Scholar
  235. LPS05.
    U. Langer, A. Pohoaţǎ, and O. Steinbach. Dual-primal boundary element tearing and interconnecting methods. Technical report no. 2005/6, Institute for Computational Mathematics, University of Technology, Graz, 2005.Google Scholar
  236. LS03.
    U. Langer and O. Steinbach. Boundary element tearing and interconnecting method. Computing, 71(3):205–228, 2003.Google Scholar
  237. LS05.
    U. Langer and O. Steinbach. Coupled boundary and finite element tearing and interconnecting methods. In R. Kornhuber, R. Hoppe, J. Periaux, O. Pironneau, O. Widlund, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering, volume 40 of Lecture Notes in Computational Sciences and Engineering, pages 83–97. Springer-Verlag, Heidelberg, 2005. http://www.ddm.org/DD15/.
  238. Lun06.
    Y. Lung-An. Numerical Methods for Exterior Problems, volume 2 of Peking University Series in Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.Google Scholar
  239. LW06a.
    J. Li and O. Widlund. BDDC algorithms for incompressible Stokes equations. SIAM J. Numer. Anal., 44(6):2432–2455, 2006.Google Scholar
  240. LW06b.
    J. Li and O. B. Widlund. FETI-DP, BDDC, and block Cholesky methods. Internat. J. Numer. Methods Engrg., 66(2):250–271, 2006.Google Scholar
  241. LW07.
    J. Li and O. B. Widlund. On the use of inexact subdomain solvers for BDDC algorithms. Comput. Methods Appl. Mech. Engrg., 196(8):1415–1428, 2007.Google Scholar
  242. Man93.
    J. Mandel. Balancing domain decomposition. Comm. Numer. Methods Engrg., 9(3):233–241, 1993.Google Scholar
  243. Mat08.
    T. P. A. Mathew. Domain decomposition methods for the numerical solution of partial differential equations, volume 61 of Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin, 2008.Google Scholar
  244. Maz60.
    V. G. Maz’ja. Classes of domains and imbedding theorems for functions spaces. Soviet Math. Dokl., 1:882–885, 1960.Google Scholar
  245. Maz85.
    V. G. Maz’ja. Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985.Google Scholar
  246. MB96.
    J. Mandel and M. Brezina. Balancing domain decomposition for problems with large jumps in coefficients. Math. Comp., 65:1387–1401, 1996.Google Scholar
  247. McL00.
    W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, UK, 2000.Google Scholar
  248. MD03.
    J. Mandel and C. R. Dohrmann. Convergence of a balancing domain decomposition by constraints and energy minimization. Numer. Lin. Alg. Appl., 10(7):639–659, 2003.Google Scholar
  249. MDT05.
    J. Mandel, C. R. Dohrmann, and R. Tezaur. An algebraic theory for primal and dual substructuring methods by constraints. Appl. Numer. Math., 54(2):167–193, 2005.Google Scholar
  250. Mel02.
    J. M. Melenk. hp-Finite Element Methods for Singular Pertubations, volume 1796 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.Google Scholar
  251. Mon03.
    P. Monk. Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2003.Google Scholar
  252. Mor66.
    C. Morrey. Multiple Integrals in the Calculus of Variations. Springer-Verlag, New York, 1966.Google Scholar
  253. MPI09.
    MPI: a message-passing interface standard, version 2.2. Technical report, University of Tennessee, Knoxville, Tennessee, 2009. http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.
  254. MS07a.
    J. Mandel and B. Sousedík. Adaptive selection of face coarse degrees of freedom in the BDDC and FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Engrg., 196(8):1389–1399, 2007.Google Scholar
  255. MS07b.
    J. Mandel and B. Sousedík. BDDC and FETI-DP under minimalist assumptions. Computing, 81(4):269–280, 2007.Google Scholar
  256. MSD08.
    J. Mandel, B. Sousedík, and C. R. Dohrmann. Multispace and multilevel BDDC. Computing, 83(2-3):55–85, 2008.Google Scholar
  257. MSŠ12.
    J. Mandel, B. Sousedík, and J. Šístek. Adaptive BDDC in three dimensions. Math. Comput. Simulation, 2012. to appear, published online Apr. 2011, http://dx.doi.org/10.1016/j.matcom.2011.03.014.
  258. MT96.
    J. Mandel and R. Tezaur. Convergence of a substructuring method with Lagrange multipliers. Numer. Math., 73(4):473–487, 1996.Google Scholar
  259. MT01.
    J. Mandel and R. Tezaur. On the convergence of a dual-primal substructuring method. Numer. Math., 88(3):543–558, 2001.Google Scholar
  260. MTF99.
    J. Mandel, R. Tezaur, and C. Farhat. A scalable substructuring method by Lagrange multipliers for plate bending problems. SIAM J. Numer. Anal., 36(5):1370–1391, 1999.Google Scholar
  261. Muc72.
    B. Muckenhoupt. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165:207–226, 1972.Google Scholar
  262. Neč67.
    J. Nečas. Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris, 1967.Google Scholar
  263. Néd80.
    J. C. Nédélec. Mixed finite elements in \({\mathbb{R}}^{3}\). Numer. Math., 35(3):315–341, 1980.Google Scholar
  264. Néd86.
    J. C. Nédélec. A new family of mixed finite elements in \({\mathbb{R}}^{3}\). Numer. Math., 50(1):57–81, 1986.Google Scholar
  265. Nep91a.
    S. V. Nepomnyaschikh. Mesh theorems on traces, normalizations of function traces and their inversion. Russion Journal of Numerical Analysis and Mathematical Modelling, 6(3):233–242, 1991.Google Scholar
  266. Nep91b.
    S. V. Nepomnyaschikh. Method of splitting into subspaces for solving elliptic boundary value problems in complex-form domains. Soviet J. Numer. Anal. Math. Modelling, 6(2):151–168, 1991.Google Scholar
  267. Nep92.
    S. V. Nepomnyaschikh. Domain decomposition and ficticious domains methods for elliptic boundary value problems. In Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 62–72. SIAM, Philadelphia, PA, 1992.Google Scholar
  268. Nep07.
    S. Nepomnyaschikh. Domain decomposition methods. In Lectures on advanced computational methods in mechanics, volume 1 of Radon Series in Computational and Applied Mathematics, pages 89–159. Walter de Gruyter, Berlin, 2007.Google Scholar
  269. ODRW89.
    J. T. Oden, L. Demkowicz, W. Rachowicz, and T. A. Westermann. Toward a universal h-p adaptive finite element strategy. II. A posteriori error estimation. Comput. Methods Appl. Mech. Engrg., 77(1-2):113–180, 1989.Google Scholar
  270. Of06.
    G. Of. BETI-Gebietszerlegungsmethoden mit schnellen Randelementverfahren und Anwendungen. PhD thesis, Universität Stuttgart, Germany, January 2006.Google Scholar
  271. Of08.
    G. Of. The all-floating BETI method: Numerical results. In U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, and W. Zulehner, editors, Domain Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering, pages 295–302. Springer-Verlag, Berlin, 2008.Google Scholar
  272. OS09.
    G. Of and O. Steinbach. The all-floating boundary element tearing and interconnecting method. J. Num. Math., 17(4):277–298, 2009.Google Scholar
  273. OSU06.
    G. Of, O. Steinbach, and P. Urthaler. Fast evaluation of Newton potentials in the boundary element method. Technical report no. 2008/3, Department for Numerical Mathematics, Graz University of Technology, Austria, 2006.Google Scholar
  274. Osw99.
    P. Oswald. On the robustness of the BPX-preconditioner with respect to jumps in the coefficients. Math. Comp., 68(226):633–650, 1999.Google Scholar
  275. PAR05.
    PARDISO. Parallel Sparse Direct Linear Solver. User Guide Version 3.0. Computer Science Department, University of Basel, Switzerland, 2005. http://www.computational.unibas.ch/cs/scicomp.
  276. Pav97.
    L. F. Pavarino. Neumann-Neumann algorithms for spectral elements in three dimensions. RAIRO Modél. Math. Anal. Numér., 31:471–493, 1997.Google Scholar
  277. Pav07.
    L. F. Pavarino. BDDC and FETI-DP preconditioners for spectral element discretizations. Comput. Methods Appl. Mech. Engrg., 196(8):1380–1388, 2007.Google Scholar
  278. Pec08a.
    C. Pechstein. BETI-DP methods in unbounded domains. In K. Kunisch, G. Of, and O. Steinbach, editors, Numerical Mathematics and Advanced Applications – ENUMATH 2007, pages 381–388. Springer-Verlag, Berlin, 2008.Google Scholar
  279. Pec08b.
    C. Pechstein. Finite and boundary element tearing and interconnecting methods for multiscale elliptic partial differential equations. Doctoral dissertation, Institute of Computational Mathematics, Johannes Kepler University, Linz, Austria, December 2008. http://www.numa.uni-linz.ac.at/Teaching/PhD/Finished/pechstein.
  280. Pec09.
    C. Pechstein. Boundary element tearing and interconnecting methods in unbounded domains. Appl. Numer. Math., 59(11):2824–2842, 2009.Google Scholar
  281. Pec12.
    C. Pechstein. Shape-explicit constants for some boundary integral operators. Appl. Anal., 2012. published online, Dec. 2011, http://dx.doi.org/10.1080/00036811.2011.643781.
  282. Pet89.
    T. von Petersdorff. Randwertprobleme der Elastizitätstheorie für Polyeder – Singularitäten und Approximation mit Randelementmethoden. PhD thesis, Technische Hochschule Darmstadt, Germany, 1989.Google Scholar
  283. Pie00.
    K. H. Pierson. A Family of Domain Decomposition Methods for the Massively Parallel Solution of Computational Mechanics Problems. PhD thesis, Aerospace Engineering, University of Colorado at Boulder, Boulder, CO, 2000.Google Scholar
  284. PJF97.
    K. C. Park, M. R. Justino, Jr., and C. A. Felippa. An algebraically partitioned FETI method for parallel structural analysis: algorithm description. Int. J. Numer. Meth. Engng., 40(15):2717–2737, 1997.Google Scholar
  285. PS72.
    C. C. Paige and M. A. Saunders. Computational variants of the Lanczos method for eigenproblems. J. Numer. Anal., 15:801–812, 1972.Google Scholar
  286. PS08.
    C. Pechstein and R. Scheichl. Analysis of FETI methods for multiscale PDEs. Numer. Math., 111(2):293–333, 2008.Google Scholar
  287. PS09.
    C. Pechstein and R. Scheichl. Scaling up through domain decomposition. Appl. Anal., 88(10–11):1589–1608, 2009.Google Scholar
  288. PS10.
    C. Pechstein and R. Scheichl. Robust FETI solvers for multiscale elliptic PDEs. In J. Roos and L. R. J. Costa, editors, Scientific Computing in Electrical Engineering SCEE 2008, volume 14 of Mathematics in Industry. Springer-Verlag, Berlin, 2010.Google Scholar
  289. PS11a.
    A. Pechstein and J. Schöberl. Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. Math. Models Methods Appl. Sci., 21(8):1761–1782, 2011.Google Scholar
  290. PS11b.
    C. Pechstein and R. Scheichl. Analysis of FETI methods for multiscale PDEs. Part II: interface variation. Numer. Math., 118(3):485–529, 2011.Google Scholar
  291. PS11c.
    C. Pechstein and R. Scheichl. Weighted Poincaré inequalities and applications in domain decomposition. In Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, editors, Decomposition Methods in Science and Engineering XIX, volume 78 of Lecture Notes in Computational Science and Engineering, pages 197–204. Springer-Verlag, Berlin, 2011.Google Scholar
  292. PS12a.
    A. Pechstein and J. Schöberl. Anisotropic mixed finite elements for elasticity. Int. J. Numer. Meth. Engng., 90(2):196–217, 2012.Google Scholar
  293. PS12b.
    C. Pechstein and R. Scheichl. Weighted Poincaré inequalities. IMA J. Numer. Anal., 2012. to appear.Google Scholar
  294. PSS12.
    C. Pechstein, M. Sarkis, and R. Scheichl. New theoretical robustness results for FETI-DP. In R. Bank, R. Kornhuber, and O. Widlund, editors, Domain Decomposition Methods in Science and Engineering XX, Lecture Notes in Computational Science and Engineering. Springer-Verlag, 2012. to appear; http://www.numa.uni-linz.ac.at/~clemens/PechsteinSarkisScheichlDD20.pdf.
  295. PW60.
    L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for convex domains. Arch. Rat. Mech. Anal., 5:286–292, 1960.Google Scholar
  296. PW02.
    L. F. Pavarino and O. B. Widlund. Balancing Neumann-Neumann methods for incompressible Stokes equations. Comm. Pure Appl. Math., 55(3):302–335, 2002.Google Scholar
  297. PWZ10.
    L. F. Pavarino, O. B. Widlund, and S. Zampini. BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions. SIAM J. Sci. Comput., 32(6):3604–3626, 2010.Google Scholar
  298. QV99.
    A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Oxford, 1999.Google Scholar
  299. RF98a.
    D. Rixen and C. Farhat. Preconditioning the FETI method for problems with intra- and inter-subdomain coefficient jumps. In P. E. Bjørstad, M. Espedal, and D. E. Keyes, editors, Proceedings of 9th International Conference on Domain Decomposition, pages 472–479, 1998. http://www.ddm.org/DD9/Rixen.pdf.
  300. RF98b.
    F.-X. Roux and C. Farhat. Parallel implementation of direct solution strategies for the coarse grid solvers in 2-level FETI method. In J. Mandel, C. Farhat, and X. Cai, editors, Domain Decomposition Methods 10. Proceedings of the 10th International Conference held in Boulder, CO, August 10–14, 1997, volume 218 of Contemporary Mathematics, pages 158–173. AMS, Providence, RI, 1998. http://www.ddm.org/DD10/.
  301. RF99.
    D. Rixen and C. Farhat. A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems. Internat. J. Numer. Methods Engrg., 44(4):489–516, 1999.Google Scholar
  302. RFTM99.
    D. Rixen, C. Farhat, R. Tezaur, and J. Mandel. Theoretical comparison of the FETI and algebraically partitioned FETI methods, and performance comparisons with a direct sparse solver. Internat. J. Numer. Methods Engrg., 46(4):501–533, 1999.Google Scholar
  303. Rhe02.
    Oliver Rheinbach. FETI – A dual iterative substructuring method for elliptic partial differential equations. Master’s thesis, Mathematisches Institut, Universität zu Köln, Germany, 2002.Google Scholar
  304. Rhe06.
    O. Rheinbach. Parallel Scalable Iterative Substructuring: Robust Exact and Inexact FETI-DP Methods with Applications to Elasticity. PhD thesis, Universität Essen-Duisburg, 2006.Google Scholar
  305. Riv08.
    B. Rivière. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, volume 35 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 2008.Google Scholar
  306. Rix97.
    D. Rixen. Substructuring and dual methods in structural analysis. PhD thesis, Collection des Publications de la Faculté des Sciences Appliquées no. 175, Université de Liège, Belgium, 1997.Google Scholar
  307. Rja90.
    S. Rjasanow. Vorkonditionierte iterative Auflösung von Randelementgleichungen für die Dirichlet-Aufgabe. Wissenschaftliche Schriftenreihe der Technischen Universität Chemnitz, Chemnitz, 1990.Google Scholar
  308. ROD89.
    W. Rachowicz, J. T. Oden, and L. Demkowicz. Toward a universal h-p adaptive finite element strategy. III. Design of h-p meshes. Comput. Methods Appl. Mech. Engrg., 77(1-2):181–212, 1989.Google Scholar
  309. Rog06.
    L. G. Rogers. Degree-independent Sobolev extension on locally uniform domains. J. Funct. Anal., 235(2):619–665, 2006.Google Scholar
  310. Rok85.
    V. Rokhlin. Rapid solution of integral equations of classical potential theory. J. Comput. Phys., 60(2):187–207, 1985.Google Scholar
  311. Rou09.
    F.-X. Roux. A FETI-2LM method for non-matching grids. In Domain Decomposition Methods in Science and Engineering XVIII, volume 70 of Lecture Notes in Computational Science and Engineering, pages 121–128. Springer-Verlag, Heidelberg, 2009.Google Scholar
  312. RS85.
    J. Ruge and K. Stüben. Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG). In D. J. Paddon and H. Holstein, editors, Multigrid Methods for Integral and Differential Equations, IMA Conference Series, pages 169–212. Clarendon Press, Oxford, 1985.Google Scholar
  313. RS07.
    S. Rjasanow and O. Steinbach. The Fast Solution of Boundary Integral Equations. Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York, 2007.Google Scholar
  314. RT77.
    P. A. Raviart and J. M. Thomas. Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comp., 31(138):391–413, 1977.Google Scholar
  315. RT01.
    F. Rapetti and A. Toselli. A FETI preconditioner for two-dimensional edge element approximations of Maxwell’s equations on nonmatching grids. SIAM J. Sci. Comput., 23(1):92–108, 2001.Google Scholar
  316. Saa03.
    Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2003.Google Scholar
  317. Sar93.
    M. V. Sarkis. Two-level Schwarz methods for nonconforming finite elements and discontinuous coefficients. In N. D. Melson, T. A. Manteuffel, and S. F. McCormick, editors, Proceedings of the Sixth Copper Mountain Conference on Multigrid Methods, volume 2, pages 543–566. NASA, Hampton, VA, 1993.Google Scholar
  318. Sar94.
    M. V. Sarkis Martins. Schwarz Preconditioners for Elliptic Problems with Discontinuous Coefficients Using Conforming and Non-Conforming Elements. Technical report, Courant Institute of Mathematical Sciences, 1994. TR-671, Department of Computer Science.Google Scholar
  319. Sar97.
    M. Sarkis. Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements. Numer. Math., 77(3):383–406, 1997.Google Scholar
  320. SBG96.
    B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.Google Scholar
  321. ŠČBN12.
    J. Šístek, M. Čertíková, P. Burda, and J. Novotný. Face-based selection of corners in 3D substructuring. Math. Comput. Simulation, 2012. to appear, published online Sept. 2011, http://dx.doi.org/10.1016/j.matcom.2011.06.007.
  322. Sch98a.
    R. Schneider. Multiskalen- und Wavelet-Matrixkompression. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart, 1998.Google Scholar
  323. Sch98b.
    Ch. Schwab. p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, New York, 1998.Google Scholar
  324. SDH04.
    E. Stein, R. De Borst, and T. J. R. Hughes. Encyclopedia of Computational Mechanics, Volume 2: Solids and Structures. John Wiley & Sons, 2004.Google Scholar
  325. SDH+11.
    N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. Abstract robust coarse spaces for systems of PDEs via gereralized eigenproblems in the overlap. NuMa-Report 2011-07, Institute of Computational Mathematics, Johannes Kepler University Linz, 2011.Google Scholar
  326. SG04.
    O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with PARDISO. Journal of Future Generation Computer Systems, 20(3):475–487, 2004.Google Scholar
  327. SG06.
    O. Schenk and K. Gärtner. On fast factorization pivoting methods for sparse symmetric indefinite systems. Electron. Trans. Numer. Anal., 23:158–179, 2006.Google Scholar
  328. Sin08.
    A. Sinwel. A new family of mixed finite elements for elasticity. Doctoral dissertation, Institute of Computational Mathematics, Johannes Kepler University, Linz, Austria, December 2008. http://www.numa.uni-linz.ac.at/Teaching/PhD/Finished/sinwel.
  329. SK98.
    D. Stefanica and A. Klawonn. The feti method for mortar finite elements. In Proceedings of the Eleventh International Conference on Domain Decomposition Methods, pages 121–129, 1998. http://www.ddm.org/DD11/Stefanica.pdf.
  330. SK04.
    H.-R. Schwarz and N. Köckler. Numerische Mathematik. Teubner, Stuttgart, 2004.Google Scholar
  331. SM08.
    B. Sousedík and J. Mandel. On the equivalence of primal and dual substructuring preconditioners. Electron. Trans. Numer. Anal., 31:384–402, 2008.Google Scholar
  332. ŠMSB12.
    J. Šístek, J. Mandel, B. Sousedík, and P. Burda. Parallel implementation of multilevel BDDC. In Proceedings of ENUMATH 2011, 2012. submitted, http://arxiv.org/abs/1201.5991.
  333. ŠNM+10.
    J. Šístek, J. Novotný, J. Mandel, M. Čertíková, and P. Burda. BDDC by a frontal solver and the stress computation in a hip joint replacement. Math. Comp. Simulation, 80(6):1310–1323, 2010.Google Scholar
  334. Sob91.
    S. L. Sobolev. Some applications of functional analysis in mathematical physics, volume 91 of Translations of Mathematical Monographs. AMS, Providence, RI, 1991. Original Russion version published by Leningrad State University, 1950.Google Scholar
  335. Sou10.
    B. Sousedík. Adaptive-Multilevel BDDC. PhD thesis, Department of Mathematical and Statistical Sciences, University of Colorado Denver, 2010. http://www-bcf.usc.edu/~sousedik/papers/BSthesisUS.pdf.
  336. Sou12.
    B. Sousedík. Multiscale BDDC for a saddle-point problem. UCD/CCM Report 303, Center for Computational Mathematics, University of Colorado at Denver, 2012. submitted, http://arxiv.org/abs/1109.0580v1.
  337. SS11.
    S. Sauter and C. Schwab. Boundary Element Methods, volume 39 of Springer series in Compuational Mathematics. Springer-Verlag, Berlin, 2011.Google Scholar
  338. ŠSB+11.
    J. Šístek, B. Sousedík, P. Burda, J. Mandel, and J. Novotný. Application of the parallel BDDC preconditioner to the Stokes flow. Comput. & Fluids, 46(1):429–435, 2011.Google Scholar
  339. ST98.
    E. P. Stephan and T. Tran. Domain decomposition algorithms for indefinite hypersingular integral equations: the h and p versions. SIAM J. Sci. Comput., 19(4):1139–1153 (electronic), 1998.Google Scholar
  340. Ste70.
    E. M. Stein. Singular Integrals and Differentiability Properties of Functions, volume 30 of Princeton Math Series. Princeton University Press, Princeton, New Jersey, 1970.Google Scholar
  341. Ste00.
    O. Steinbach. OSTBEM – A boundary element software package. Technical report, University of Stuttgart, 2000.Google Scholar
  342. Ste01.
    D. Stefanica. A numerical study of FETI algorithms for mortar finite element methods. SIAM J. Sci. Comput., 23(4):1135–1160, 2001.Google Scholar
  343. Ste03a.
    O. Steinbach. Artificial multilevel boundary element preconditioners. Proc. Appl. Math. Mech., 3:539–542, 2003.Google Scholar
  344. Ste03b.
    O. Steinbach. Stability estimates for hybrid coupled domain decomposition methods, volume 1809 of Lecture Notes in Mathematics. Springer-Verlag, Heidelberg, 2003.Google Scholar
  345. Ste08.
    O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer-Verlag, New York, 2008.Google Scholar
  346. Ste11.
    O. Steinbach. A note on the stable one-equation coupling of finite and boundary elements. SIAM J. Numer. Anal., 49(4):1521–1531, 2011.Google Scholar
  347. SV07.
    R. Scheichl and E. Vainikko. Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients. Computing, 80(4):319–343, 2007.Google Scholar
  348. SVZ11.
    R. Scheichl, P. S. Vassilevski, and L. T. Zikatanov. Weak approximation properties of elliptic projections with functional constraints. Multiscale Modeling and Simulation and Analysis, 9(4):1677–1699, 2011.Google Scholar
  349. SVZ12.
    R. Scheichl, P. S. Vassilevski, and L. T. Zikatanov. Mutilevel methods for elliptic problems with highly varying coefficients on non-aligned coarse grids. SIAM J. Numer. Anal., 2012. to appear, Preprint LLNL-JRNL-404462, Lawrence Livermore National Laboratory, CA.Google Scholar
  350. SW01.
    O. Steinbach and W. L. Wendland. On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl., 262(2):733–748, 2001.Google Scholar
  351. SW11a.
    O. Steinbach and M. Windisch. Robust boundary element domain decomposition solvers in acoustics. In Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering XIX, volume 78 of Lecture Notes in Computational Science and Engineering, pages 277–284. Springer-Verlag, Heidelberg, 2011.Google Scholar
  352. SW11b.
    O. Steinbach and M. Windisch. Stable boundary element domain decomposition methods for the Helmholtz equation. Numer. Math., 118(1):171–195, 2011.Google Scholar
  353. SW12.
    O. Steinbach and M. Windisch. Stable BETI methods in electromagnetics. In R. Bank, R. Kornhuber, and O. Widlund, editors, Domain Decomposition Methods in Science and Engineering XX, Lecture Notes in Computational Science and Engineering. Springer-Verlag, 2012. to appear.Google Scholar
  354. SZ90.
    L. R. Scott and S. Zhang. Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp., 54:483–493, 1990.Google Scholar
  355. Tez98.
    R. Tezaur. Analysis of Lagrange multiplier based domain decomposition. PhD thesis, University of Colorado at Denver, 1998. http://www-math.cudenver.edu/graduate/thesis/rtezaur.pdf.
  356. TK01.
    A. Toselli and A. Klawonn. A FETI domain decomposition method for edge element approximations in two dimensions with discontinous coefficients. SIAM J. Numer. Anal., 39(3):932–956, 2001.Google Scholar
  357. TL08.
    X. Tu and J. Li. A balancing domain decomposition method by constraints for advection-diffusion problems. Comm. App. Math. and Comp. Sci., 3(1), 2008.Google Scholar
  358. Tos99.
    A. Toselli. Domain Decomposition for Vector Field Problems. PhD thesis, Courant Institute of Mathematical Sciences, New York University, New York, USA, May 1999.Google Scholar
  359. Tos00.
    A. Toselli. Neumann-Neumann methods for vector field problems. Electron. Trans. Numer. Anal., 11:1–24, 2000.Google Scholar
  360. Tos01.
    A. Toselli. FETI domain decomposition methods for scalar advection-diffusion problems. Comput. Methods Appl. Mech. Engrg., 190(43–44):5759–5776, 2001.Google Scholar
  361. Tos06.
    A. Toselli. Dual-primal FETI algorithms for egde finite-element approximations in 3D. IMA J. Numer. Anal., 26:96–130, 2006.Google Scholar
  362. Tu05.
    X. Tu. A BDDC algorithm for a mixed formulation of flow in porous media. Electron. Trans. Numer. Anal., 20:164–179, 2005.Google Scholar
  363. Tu07a.
    X. Tu. A BDDC algorithm for flow in porous media with a hybrid finite element discretization. Electron. Trans. Numer. Anal., 26:146–160, 2007.Google Scholar
  364. Tu07b.
    X. Tu. Three-level BDDC in three dimensions. SIAM J. Sci. Comp., 29(4):1759–1780, 2007.Google Scholar
  365. Tu07c.
    X. Tu. Three-level BDDC in two dimensions. Int. J. Numer. Meth. Engng., 69(1):33–59, 2007.Google Scholar
  366. Tu11.
    X. Tu. A three-level BDDC algorithm for saddle point problems. Numer. Math., 119:189–217, 2011.Google Scholar
  367. TV03.
    A. Toselli and X. Vasseur. A numerical study on Neumann-Neumann and FETI methods for hp-approximations on geometrically refined boundary layer meshes in two dimensions. Comput. Methods Appl. Mech. Engrg., 192:4551–4579, 2003.Google Scholar
  368. TV04.
    A. Toselli and X. Vasseur. A numerical study on Neumann-Neumann and FETI methods for hp-approximations boundary layer meshes in three dimensions. IMA J. Numer. Anal., 24(1):123–156, 2004.Google Scholar
  369. TV06.
    A. Toselli and X. Vasseur. A numerical study on Neumann-Neumann methods for hp approximations on geometrically refined boundary layer meshes ii. Three-dimensional problems. ESAIM Math. Model. Numer. Anal., 40(1):99–122, 2006.Google Scholar
  370. TW05.
    A. Toselli and O. B. Widlund. Domain Decomposition Methods – Algorithms and Theory, volume 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.Google Scholar
  371. Urt08.
    P. Urthaler. Schnelle Auswertung von Volumenpotentialen in der Randelementmethode. Master’s thesis, Graz University of Technology, Graz, 2008. http://www.numerik.math.tu-graz.ac.at/berichte/Bericht0108.pdf.
  372. Van82.
    H. Van der Vorst. A generalized Lanczos scheme. Math. Comp., 39:559–561, 1982.Google Scholar
  373. Vas08.
    P. S. Vassilevski. Multilevel block factorization preconditioners. Springer-Verlag, New York, 2008.Google Scholar
  374. VMB96.
    P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for 2nd and 4th order elliptic problems. Computing, 56(3):179–196, 1996.Google Scholar
  375. VSM99.
    C. Vuik, A. Segal, and J. A. Meijerink. An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients. J. Comput. Phys., 152(1):385–403, 1999.Google Scholar
  376. VSMW01.
    C. Vuik., A. Segal., J. A. Meijerink, and G. T. Wijma. The construction of projection vectors for a deflated ICCG method applied to problems with extreme contrasts in the coefficients. J. Comput. Phys., 172(2):426–450, 2001.Google Scholar
  377. VV09.
    A. Veeser and R. Verfürth. Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal., 47(3):2387–2405, 2009.Google Scholar
  378. VV11.
    A. Veeser and R. Verfürth. Poincaré constants of finite element stars. IMA J. Numer. Anal., 32(1):40–47, 2011.Google Scholar
  379. Wei98.
    J. Weickert. Anisotropic diffusion in image processing. Teubner, Stuttgart, Germarny, 1998. out of print, free download http://www.mia.uni-saarland.de/weickert/Papers/book.pdf.
  380. Win10.
    M. Windisch. Boundary Element Tearing and Interconnecting for Acoustig and Electromagnetic Scattering. Doctoral dissertation, TU Graz, Graz, Austria, December 2010. appeared in the Monographic Series TU Graz: Computation in Engineering and Science, vol. 11, 2011, http://fmysql.tu-graz.ac.at/~karl/verlagspdf/buch_windisch_10062011.pdf.
  381. WX94.
    J. Wang and R. Xie. Domain decomposition for elliptic problems with large jumps in coefficients. In Proceedings of Conference on Scientific and Engineering Computing, pages 74–86. National Defense Industry Press, Beijing, China, 1994.Google Scholar
  382. XZ08.
    J. Xu and Y. Zhu. Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Math. Mod. Meth. Appl. Sci., 18(1):77–105, 2008.Google Scholar
  383. Zag06.
    S. Zaglmayr. High order finite elements for electromagnetic field computation. PhD thesis, Johannes Kepler University Linz, Austria, 2006. http://www.numa.uni-linz.ac.at/Teaching/PhD/Finished/zaglmayr-diss.pdf.
  384. Zei90.
    E. Zeidler. Nonlinear Functional Analysis and Its Applications – Part 2B: Nonlinear Monotone Operators. Springer-Verlag, New York, 1990.Google Scholar
  385. ZKB77.
    O. C. Zienkiewicz, D. M. Kelly, and P. Bettess. The coupling of the finite element method and boundary solution procedures. Int. J. Numer. Meth. Eng., 11(2):355–375, 1977.Google Scholar
  386. ZKB79.
    O. C. Zienkiewicz, D. M. Kelly, and P. Bettess. Marriage a la mode – the best of both worlds (Finite elements and boundary integrals). In R. Glowinski, E. Y. Rodin, and O. C. Zienkiewicz, editors, Energy Methods in Finite Element Analysis, chapter 5, pages 81–106. Wiley and Son, London, 1979.Google Scholar
  387. ZP08.
    V. V. Zhikov and S. E. Pastukhova. Homogenization of degenerate elliptic equations. Sib. Math. J., 49(1):80–101, 2008.Google Scholar
  388. Zul02.
    W. Zulehner. Analysis of iterative methods for saddle point problems: A unified approach. Mathematics of Computation, 71:479–505, 2002.Google Scholar
  389. Zul11.
    W. Zulehner. Nonstandard norms and robust estimates for saddle point problems. SIAM J. Matrix Anal. Appl., 32(2):536–560, 2011.Google Scholar
  390. Zum03.
    G. Zumbusch. Parallel Multilevel Methods – Adaptive Mesh Refinement and Loadbalancing. B. G. Teubner, Stuttgart, Leipzig, Wiesbaden, 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Clemens Pechstein
    • 1
  1. 1.Institute of Computational MathematicsJohannes Kepler UniversityLinzAustria

Personalised recommendations