Advertisement

Integrating WSN Simulation into Workflow Testing and Execution

  • Duarte Vieira
  • Francisco Martins
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 57)

Abstract

Sensor networks are gaining momentum in various fields, notably in industrial and environmental monitoring, and more recently in logistics. The information gathered from the environment (by sensor networks) may influence the execution of workflows, making it difficult to test these systems as a whole. Generally, the tests carried out on the aforementioned systems make use of recorded information in earlier workflow executions. Alternatively, we propose the testing of such workflows by incorporating results obtained from the simulation of sensor network applications, allowing the testing of new workflows, as well as of the changes made to a given workflow by events in the environment. This paper describes a means of integrating existing platforms with the aim of introducing the simulation of sensor networks in workflow testing and execution.

Keywords

Sensor Network Sensor Node Wireless Sensor Network Business Process Execution Language Execution Engine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge (1986)Google Scholar
  2. 2.
    Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)CrossRefGoogle Scholar
  3. 3.
    Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: An extensible system for design and execution of scientific workflows. In: SSDBM 2004: Proceedings of the 16th International Conference on Scientific and Statistical Database Management, pp. 423–424. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  4. 4.
    Baldwin, P., Kohli, S., Lee, E.A., Liu, X., Zhao, Y.: Modelling of sensor nets in Ptolemy II. In: Proceedings of IPSN 2004, pp. 359–368. ACM Press, New York (2004)Google Scholar
  5. 5.
    Brooks, C., Lee, E.A., Liu, X., Neuendorffer, S., Zhao, Y., Zheng, H.: Heterogeneous concurrent modeling and design in java (volume 1: Introduction to ptolemy ii). Technical Report UCB/EECS-2008-28, Electrical Engineering and Computer Sciences University of California at Berkeley (2008)Google Scholar
  6. 6.
    Delaitre, T., Goyeneche, A., Kacsuk, P., Kiss, T., Terstyanszky, G., Winter, S.: Gemlca: Grid execution management for legacy code architecture design. In: EUROMICRO 2004: Proceedings of the 30th EUROMICRO Conference, pp. 477–483. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  7. 7.
    Egea-Lopez, E., Vales-Alonso, J., Martinez-Sala, A., Pavon-Mariño, P., Garcia-Haro, J.: Simulation Scalability Issues in Wireless Sensor Networks. IEEE Communications Magazine 44(7), 64–73 (2006)CrossRefGoogle Scholar
  8. 8.
    Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming heterogeneity - the ptolemy approach. Proceedings of IEEE 91(2), 127–144 (2003)CrossRefGoogle Scholar
  9. 9.
    Glombitza, N., Lipphardt, M., Werner, C., Fischer, S.: Using graphical process modeling for realizing soa programming paradigms in sensor networks. In: Proceedings of the 6th Annual IEEE/IFIP Conference on Wireless On demand Network Systems and Services, pp. 61–68 (2009)Google Scholar
  10. 10.
    Glombitza, N., Pfisterer, D., Fischer, S.: Integrating wireless sensor networks into web service-based business processes. In: MidSens 2009: Proceedings of the 4th International Workshop on Middleware Tools, Services and Run-Time Support for Sensor Networks, pp. 25–30. ACM, New York (2009)CrossRefGoogle Scholar
  11. 11.
    Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung, W., Cai, W., Duce, D., Cooper, C.: GRIDKIT: Pluggable overlay networks for grid computing. In: Chung, S. (ed.) OTM 2004. LNCS, vol. 3291, pp. 1463–1481. Springer, Heidelberg (2004), doi:10.1007/978-3-540-30469-2_40CrossRefGoogle Scholar
  12. 12.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for networked sensors. In: Proceedings of the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 93–104. ACM Press, New York (2000)CrossRefGoogle Scholar
  13. 13.
    Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Research 34(Web Server issue), 729–732 (2006)Google Scholar
  14. 14.
    JBoss.: jbpm website, http://www.jboss.org/jbpm/ last accessed in October 20, 2010)
  15. 15.
    Ko, R., Lee, S., Lee, E.: Business process management (bpm) standards: A survey. Business Process Management Journal 15(5) (2009)Google Scholar
  16. 16.
    Kukla, T., Kiss, T., Terstyanszky, G., Kacsuk, P.: A general and scalable solution for heterogeneous workflow invocation and nesting. In: WORKS 2008: Proceedings of the Workflows in Support of Large-Scale Science, Third Workshop, pp. 1–8. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Lim, H., Teo, Y., Mukherjee, P., Lam, T., Wong, W., See, S.: Sensor grid: integration of wireless sensor networks and the grid. In: The IEEE Conference on Local Computer Networks, 30th Anniversary, pp. 91–99 (2005)Google Scholar
  18. 18.
    Lopes, L., Martins, F., Barros, J.: Middleware for Network Eccentric and Mobile Applications, ch. 2, pp. 25–41. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Lopes, L., Martins, F.: A semantically robust framework for programming wireless sensor networks. TR 2010–01, DCC/FCUP (March 2010), http://www.dcc.fc.up.pt/dcc/Pubs/TReports/TR10/dcc-2010-01.pdf
  20. 20.
    Martins, F., Lopes, L., Barros, J.: Towards the safe programming of wireless sensor networks. In: Proceedings of ETAPS 2009 (2009)Google Scholar
  21. 21.
    Reddy, A., Kumar, A., Janakiram, D.: Workflow process model integrating wireless sensor networks with grids. Technical report, Distributed and Object Systems Lab, Dept. Of CSE (2007)Google Scholar
  22. 22.
    Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.J.: Workflow simulation for operational decision support. Data Knowl. Eng. 68(9), 834–850 (2009)CrossRefGoogle Scholar
  23. 23.
    Taylor, I.J., Schutz, B.F.: Triana - A Quicklook Data Analysis System for Gravitational Wave Detectors. In: Second Workshop on Gravitational Wave Data Analysis, pp. 229–237 (1998)Google Scholar
  24. 24.
    van der Aalst, W.: Yawl: yet another workflow language. Information Systems 30(4), 245–275 (2005)CrossRefGoogle Scholar
  25. 25.
    van der Aalst, W.M.P., Aldred, L., Dumas, M., ter Hofstede, A.H.M.: Design and implementation of the YAWL system. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 142–159. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Vieira, D., Martins, F.: Automatic generation of WSN simulations: From Callas applications to VisualSense models. In: Proceedings of SENSORCOMM (2010) (to appear)Google Scholar
  27. 27.
    Yoneki, E., Bacon, J.: A survey of wireless sensor network technologies: Research trends and middleware’s role. Technical Report UCAM-CL-TR646, University of Cambridge (2005)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2011

Authors and Affiliations

  • Duarte Vieira
    • 1
  • Francisco Martins
    • 1
  1. 1.LaSIGE & Departamento de InformáticaFaculdade de Ciências da Universidade de LisboaLisboaPortugal

Personalised recommendations