Skip to main content

ELOG: A Probabilistic Reasoner for OWL EL

  • Conference paper
Web Reasoning and Rule Systems (RR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6902))

Included in the following conference series:

Abstract

Log-linear description logics are probabilistic logics combining several concepts and methods from the areas of knowledge representation and reasoning and statistical relational AI. We describe some of the implementation details of the log-linear reasoner ELOG. The reasoner employs database technology to dynamically transform inference problems to integer linear programs (ILP). In order to lower the size of the ILPs and reduce the complexity we employ a form of cutting plane inference during reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A., Beeri, C., Ullman, J.: The theory of joins in relational databases. ACM Transactions on Database Systems (TODS) 4(3), 297–314 (1979)

    Article  Google Scholar 

  2. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proceedings of IJCAI (2005)

    Google Scholar 

  3. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  4. Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description logic. In: Proceedings of the 14th AAAI Conference on Artificial Intelligence (1997)

    Google Scholar 

  5. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. J. of Web Sem. 6 (2008)

    Google Scholar 

  6. Niepert, M.: A Delayed Column Generation Strategy for Exact k-Bounded MAP Inference in Markov Logic Networks. In: Proceedings of UAI (2010)

    Google Scholar 

  7. Niepert, M., Meilicke, C., Stuckenschmidt, H.: A Probabilistic-Logical Framework for Ontology Matching. In: Proceedings of AAAI (2010)

    Google Scholar 

  8. Niepert, M., Noessner, J., Stuckenschmidt, H.: Log-Linear Description Logics. In: Proceedings of IJCAI (2011)

    Google Scholar 

  9. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic dependencies. In: Proceedings of AAAI (2006)

    Google Scholar 

  10. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2) (2006)

    Google Scholar 

  11. Riedel, S.: Improving the accuracy and efficiency of map inference for markov logic. In: Proceedings of UAI (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noessner, J., Niepert, M. (2011). ELOG: A Probabilistic Reasoner for OWL EL. In: Rudolph, S., Gutierrez, C. (eds) Web Reasoning and Rule Systems. RR 2011. Lecture Notes in Computer Science, vol 6902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23580-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23580-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23579-5

  • Online ISBN: 978-3-642-23580-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics