Ontological Query Answering with Existential Rules

  • Marie-Laure Mugnier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6902)


The need for an ontological layer on top of data, associated with advanced reasoning mechanisms able to exploit the semantics encoded in ontologies, has been acknowledged both in the database and knowledge representation communities. We focus in this paper on the ontological query answering problem, which consists of querying data while taking ontological knowledge into account. To tackle this problem, we consider a logical framework based on existential rules, also called Tuple-Generating Dependencies or Datalog+/- rules. This framework can also be defined in graph terms. Query entailment with existential rules is not decidable, thus a crucial issue is to define decidable classes of rules as large as possible. This paper is a survey of decidable classes of rules, including a review of the main complexity results. It mostly relies on previous work presented at IJCAI’2009 [BLMS09] and KR’2010 [BLM10] (and developed in a journal paper [BLMS11]), updated to include very recent results.


Description Logic Tree Decomposition Rule Application Equality Rule Conjunctive Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AHV95]
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  2. [AvBN96]
    Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments of FOL. Research Report ML-96-03. Univ. of Amsterdam (1996)Google Scholar
  3. [Bag04]
    Baget, J.-F.: Improving the forward chaining algorithm for conceptual graphs rules. In: KR 2004, pp. 407–414. AAAI Press, Menlo Park (2004)Google Scholar
  4. [BBL05]
    Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In: IJCAI 2005, pp. 364–369 (2005)Google Scholar
  5. [BLM10]
    Baget, J.-F., Leclère, M., Mugnier, M.-L.: Walking the decidability line for rules with existential variables. In: KR 2010, pp. 466–476. AAAI Press, Menlo Park (2010)Google Scholar
  6. [BLMS09]
    Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: Extending decidable cases for rules with existential variables. In: IJCAI 2009, pp. 677–682 (2009)Google Scholar
  7. [BLMS11]
    Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: On rules with existential variables: Walking the decidability line. Artificial Intelligence 175(9-10), 1620–1654 (2011)CrossRefzbMATHGoogle Scholar
  8. [BM02]
    Baget, J.-F., Mugnier, M.-L.: The Complexity of Rules and Constraints. J. Artif. Intell. Res (JAIR) 16, 425–465 (2002)zbMATHGoogle Scholar
  9. [BMRT11]
    Baget, J.-F., Mugnier, M.-L., Rudolph, S., Thomazo, M.: Walking the complexity lines for generalized guarded existential rules. In: IJCAI 2011 ( to appear 2011)Google Scholar
  10. [BMT11]
    Baget, J.F., Mugnier, M.-L., Thomazo, M.: Towards farsighted dependencies for existential rules. Research report lirmm 11-016 (2011)Google Scholar
  11. [BV81]
    Beeri, C., Vardi, M.: The implication problem for data dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  12. [BV84]
    Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. Journal of the ACM 31(4), 718–741 (1984)CrossRefzbMATHGoogle Scholar
  13. [CGK08]
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. In: KR 2008, pp. 70–80 (2008)Google Scholar
  14. [CGL+07]
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)CrossRefzbMATHGoogle Scholar
  15. [CGL09]
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. In: PODS 2009, pp. 77–86 (2009)Google Scholar
  16. [CGL10a]
    Calì, A., Gottlob, G., Lukasiewicz, T.: Datalog extensions for tractable query answering over ontologies. In: De Virgilio, R., Giunchiglia, F., Tanca, L. (eds.) Semantic Web Information Management: A Model-Based Perspective, pp. 249–279. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. [CGL+10b]
    Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A family of logical knowledge representation and query languages for new applications. In: LICS, pp. 228–242. IEEE Computer Society, Los Alamitos (2010)Google Scholar
  18. [CGP10a]
    Calì, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. PVLDB 3(1), 554–565 (2010)Google Scholar
  19. [CGP10b]
    Calì, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in datalog+/-. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 1–17. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. [CLM81]
    Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational dependencies and their inference problem. In: STOC 1981, pp. 342–354. ACM, New York (1981)Google Scholar
  21. [CM09]
    Chein, M., Mugnier, M.-L.: Graph-based Knowledge Representation and Reasoning—Computational Foundations of Conceptual Graphs. In: Advanced Information and Knowledge Processing, Springer, Heidelberg (2009)Google Scholar
  22. [Cou90]
    Courcelle, B.: The monadic second-order logic of graphs: I. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)CrossRefzbMATHGoogle Scholar
  23. [CV85]
    Chandra, A.K., Vardi, M.Y.: The implication problem for functional and inclusion dependencies is undecidable. SIAM J. Comput. 14(3), 671–677 (1985)CrossRefzbMATHGoogle Scholar
  24. [DEGV01]
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  25. [DNR08]
    Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: PODS 2008, pp. 149–158 (2008)Google Scholar
  26. [DT03]
    Deutsch, A., Tannen, V.: Reformulation of xml queries and constraints. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 225–238. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. [FKMP03]
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. [FKMP05]
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)CrossRefzbMATHGoogle Scholar
  29. [KR11]
    Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclicity and guardedness. In: IJCAI 2011(to appear 2011)Google Scholar
  30. [KRH07]
    Krötzsch, M., Rudolph, S., Hitzler, P.: Complexity boundaries for Horn description logics. In: AAAI 2007, pp. 452–457. AAAI Press, Menlo Park (2007)Google Scholar
  31. [LTW09]
    Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic el using a relational database system. In: IJCAI 2009, pp. 2070–2075 (2009)Google Scholar
  32. [Mar09]
    Marnette, B.: Generalized schema-mappings: from termination to tractability. In: PODS, pp. 13–22 (2009)Google Scholar
  33. [MSL09]
    Meier, M., Schmidt, M., Lausen, G.: On chase termination beyond stratification. In: PVLDB, vol. 2(1), pp. 970–981 (2009)Google Scholar
  34. [RKH08]
    Rudolph, S., Krötzsch, M., Hitzler, P.: All elephants are bigger than all mice. In: Description Logics (2008)Google Scholar
  35. [SM96]
    Salvat, E., Mugnier, M.-L.: Sound and Complete Forward and Backward Chainings of Graph Rules. In: Eklund, P., Mann, G.A., Ellis, G. (eds.) ICCS 1996. LNCS (LNAI), vol. 1115, pp. 248–262. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  36. [Sow84]
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marie-Laure Mugnier
    • 1
  1. 1.University Montpellier 2France

Personalised recommendations