DCU and ISI@INEX 2010: Adhoc and Data-Centric Tracks

  • Debasis Ganguly
  • Johannes Leveling
  • Gareth J. F. Jones
  • Sauparna Palchowdhury
  • Sukomal Pal
  • Mandar Mitra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6932)

Abstract

We describe the participation of Dublin City University (DCU) and Indian Statistical Institute (ISI) in INEX 2010 for the Adhoc and Data Centric tracks. The main contributions of this paper are: i) a simplified version of Hierarchical Language Model (HLM), which involves scoring XML elements with a combined probability of generating the given query from itself and the top level articl node, is shown to outperform the baselines of LM and VSM scoring of XML elements; ii) the Expectation Maximization (EM) feedback in LM is shown to be the most effective on the domain specific collection of IMDB; iii) automated removal of sentences indicating aspects of irrelevance from the narratives of INEX ad hoc topics is shown to improve retrieval effectiveness.

Keywords

Query Term Query Expansion Article Level Language Modeling Approach Good Retrieval Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kamps, J., Geva, S., Trotman, A., Woodley, A., Koolen, M.: Overview of the INEX 2008 ad hoc track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 1–28. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Pal, S., Mitra, M., Ganguly, D.: Parameter tuning in pivoted normalization for XML retrieval: ISI@INEX09 adhoc focused task. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 112–121. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Lovins, J.B.: Development of a stemming algorithm. Mechanical Translation and Computational Linguistics 11, 22–31 (1968)Google Scholar
  4. 4.
    Hiemstra, D.: Using language models for information retrieval. PhD thesis, University of Twente (2001)Google Scholar
  5. 5.
    Sigurbjrnsson, B., Kamps, J., de Rijke, M.: An element-based approach to xml retrieval. In: INEX 2003 Workshop Proceedings (2004)Google Scholar
  6. 6.
    Ogilvie, P., Callan, J.: Hierarchical language models for XML component retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 224–237. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Singhal, A.: Term Weighting Revisited. PhD thesis, Cornell University (1996)Google Scholar
  8. 8.
    Ponte, J.M.: A language modeling approach to information retrieval. PhD thesis, University of Massachusetts (1998)Google Scholar
  9. 9.
    Palchowdhury, S., Pal, S., Mitra, M.: Using negative information in search. In: Proc. 2011 Second International Conference on Emerging Applications of Information Technology (EAIT 2011), pp. 53–56 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Debasis Ganguly
    • 1
  • Johannes Leveling
    • 1
  • Gareth J. F. Jones
    • 1
  • Sauparna Palchowdhury
    • 2
  • Sukomal Pal
    • 2
  • Mandar Mitra
    • 2
  1. 1.CNGL, School of ComputingDublin City UniversityDublinIreland
  2. 2.CVPR UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations