Chemical Reaction Systems, Computer Algebra and Systems Biology

(Invited Talk)
  • François Boulier
  • François Lemaire
  • Michel Petitot
  • Alexandre Sedoglavic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6885)


In this invited paper, we survey some of the results obtained in the computer algebra team of Lille, in the domain of systems biology. So far, we have mostly focused on models (systems of equations) arising from generalized chemical reaction systems. Eight years ago, our team was involved in a joint project, with physicists and biologists, on the modeling problem of the circadian clock of the green algae Ostreococcus tauri. This cooperation led us to different algorithms dedicated to the reduction problem of the deterministic models of chemical reaction systems. More recently, we have been working more tightly with another team of our lab, the BioComputing group, interested by the stochastic dynamics of chemical reaction systems. This cooperation led us to efficient algorithms for building the ODE systems which define the statistical moments associated to these dynamics. Most of these algorithms were implemented in the MAPLE computer algebra software. We have chosen to present them through the corresponding MAPLE packages.


Circadian Clock Computer Algebra Weyl Algebra Maple Package Euler Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Thomas Decomposition of Algebraic and Differential Systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 31–54. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P., de Jong, H.: Efficient parameter search for qualitative models of regulatory networks using symbolic model checking. In: ECCB, vol. 26, pp. i603–i610 (2010)Google Scholar
  3. 3.
    Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Applicable Algebra in Engineering, Communication and Computing 20(1), 73–121 (2009); (1997 Tech. rep. IT306 of the LIFL)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Model Reduction of Chemical Reaction Systems using Elimination. Presented at the International Conference MACIS 2007 (2007),
  5. 5.
    Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Applying a Rigorous Quasi-Steady State Approximation Method for Proving the Absence of Oscillations in Models of Genetic Circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56–64. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E., Ürgüplü, A.: On Proving the Absence of Oscillations in Models of Genetic Circuits. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007),
  7. 7.
    Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bulletin 37(4), 97–108 (2003), CrossRefzbMATHGoogle Scholar
  8. 8.
    Chaves, M., Sontag, E.D.: State-Estimators for Chemical Reaction Networks of Feinberg-Horn-Jackson Zero Deficiency Type. European Journal Control 8, 343–359 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    The Cytoscape Consortium. Cytoscape: An Open Source Platform for Complex Network Analysis and Visualization (2001-2010),
  10. 10.
    Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. SIGSAM Bulletin 31(2), 2–9 (1997)CrossRefGoogle Scholar
  11. 11.
    El Din, M.S.: RAGLib: A library for real solving polynomial systems of equations and inequalities (2007),
  12. 12.
    Derelle, É., et al.: Genome Analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Science of the USA 103(31) (August 2006)Google Scholar
  13. 13.
    Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4, 64–73 (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Feinberg, M.: The Existence and Uniqueness of Steady States for a Classe of Chemical Reaction Networks. Arch. Rational Mech. Anal. 132, 311–370 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6), 1361–1382 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gillespie, C.S.: Moment-closure approximations for mass-action models. Systems Biology, IET 3(1) (2009)Google Scholar
  17. 17.
    Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  18. 18.
    Henri, V.: Lois générales de l’Action des Diastases. Hermann, Paris (1903)Google Scholar
  19. 19.
    Kœrn, M., Elston, T.C., Blake, W.J., Collins, J.J.: Stochasticity in gene expression: from theories to phenotypes. Nature 6, 451–464 (2005)Google Scholar
  20. 20.
    Kokotovic, P., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Classics in Applied Mathematics, vol. 25. SIAM, Philadelphia (1999)Google Scholar
  21. 21.
    Lemaire, F., Maza, M.M., Xie, Y.: The RegularChains library in MAPLE 10. In: Kotsireas, I.S. (ed.) The MAPLE Conference, pp. 355–368 (2005)Google Scholar
  22. 22.
    Lemaire, F., Ürgüplü, A.: A method for semi-rectifying algebraic and differential systems using scaling type Lie point symmetries with linear algebra. In: Proceedings of ISSAC 2010, München, Germany, pp. 85–92 (August 2010)Google Scholar
  23. 23.
    Lemaire, F., Ürgüplü, A.: Mabsys: Modeling and analysis of biological systems. In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) Proceedings of Algebraic and Numeric Biology 2010, Castle of Hagenberg, Austria (August 2010)Google Scholar
  24. 24.
    Lemaire, F., Ürgüplü, A.: The MABSys MAPLE package (2010),
  25. 25.
    Michaelis, L., Menten, M.: Die kinetik der invertinwirkung. Biochemische Zeitschrift 49, 333–369 (1973), Partial translation in english on
  26. 26.
    Moroz, G., Rouillier, F.: DV: Un logiciel de classification des solutions réelles d’un système paramétré (2009),
  27. 27.
    Murray, J.D.: Mathematical Biology I. An Introduction, 3rd edn. Interdisciplinary Applied Mathematics, vol. 17. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  28. 28.
    Niu, W.: Qualitative Analysis of Biological Systems Using Algebraic Methods. PhD thesis, Université Paris VI, Paris (June 2011)Google Scholar
  29. 29.
    Nöthen, A.L.: Quasistationarität und Fast-Invariante Mengen Gewönlicher Differentialgleichungen. PhD thesis, Rheinisch-Westfälischen Technischen Hochschule (2008)Google Scholar
  30. 30.
    Othmer, H.G.: Analysis of Complex Reaction Networks in Signal Transduction, Gene Control and Metabolism (2006),
  31. 31.
    Paulsson, J.: Models of stochastic gene expression. Physics of Life Reviews 2, 157–175 (2005)CrossRefGoogle Scholar
  32. 32.
    Paulsson, J., Elf, J.: Stochastic Modeling of Intracellular Kinetics. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 149–175. The MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  33. 33.
    Érdi, P., Tóth, J.: Mathematical models of chemical reactions: theory and applications of deterministic and stochastic models. Princeton University Press, Princeton (1989)zbMATHGoogle Scholar
  34. 34.
    Petitot, M.: The MAGNUS MAPLE software (2010),
  35. 35.
    Sedoglavic, A.: Reduction of Algebraic Parametric Systems by Rectification of Their Affine Expanded Lie Symmetries. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 277–291. Springer, Heidelberg (2007)Google Scholar
  36. 36.
    Sedoglavic, A., Ürgüplü, A.: Expanded Lie Point Symmetry, MAPLE package (2007),
  37. 37.
    Singh, A., Hespanha, J.P.: Lognormal Moment Closures for Biochemical Reactions. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2063–2068 (2006)Google Scholar
  38. 38.
    Ürgüplü, A.: Contribution to Symbolic Effective Qualitative Analysis of Dynamical Systems; Application to Biochemical Reaction Networks. PhD thesis, University Lille I, Lille, France (2010)Google Scholar
  39. 39.
    Van Breusegem, V., Bastin, G.: Reduced order dynamical modelling of reaction systems: a singular perturbation approach. In: Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, England, pp. 1049–1054 (December 1991)Google Scholar
  40. 40.
    Vidal, S., Petitot, M., Boulier, F., Lemaire, F., Kuttler, C.: Models of Stochastic Gene Expression and Weyl Algebra. In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) Proceedings of Algebraic and Numeric Biology 2010, Castle of Hagenberg, Austria, pp. 50–67 (August 2010)Google Scholar
  41. 41.
    Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in genetic oscillators. Proceedings of the National Academy of Science of the USA 99(9), 5988–5992 (2002)Google Scholar
  42. 42.
    Xia, B.: DISCOVERER: A tool for solving semi-algebraic systems. ACM Commun. Comput. Algebra 41, 102–103 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • François Boulier
    • 1
  • François Lemaire
    • 1
  • Michel Petitot
    • 1
  • Alexandre Sedoglavic
    • 1
  1. 1.Université Lille I, LIFLVilleneuve d’AscqFrance

Personalised recommendations