On the Regularity Property of Differential Polynomials Modulo Regular Differential Chains

  • François Boulier
  • François Lemaire
  • Alexandre Sedoglavic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6885)

Abstract

This paper provides an algorithm which computes the normal form of a rational differential fraction modulo a regular differential chain if, and only if, this normal form exists. A regularity test for polynomials modulo regular chains is revisited in the nondifferential setting and lifted to differential algebra. A new characterization of regular chains is provided.

Keywords

Normal Form Prime Ideal Symbolic Computation Regularity Property Canonical Representative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubry, P., Lazard, D., Maza, M.M.: On the Theories of Triangular Sets. Journal of Symbolic Computation 28, 105–124 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Boulier, F., Lemaire, F.: A Normal Form Algorithm for Regular Differential Chains. Mathematics in Computer Science 4(2), 185–201 (2010), doi:10.1007/s11786-010-0060-3MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Boulier, F.: Efficient computation of regular differential systems by change of rankings using Kähler differentials. Technical report, Université Lille I, 59655, Villeneuve d’Ascq, France, Ref. LIFL 1999–14, presented at the MEGA (2000), conference (November 1999), http://hal.archives-ouvertes.fr/hal-00139738
  4. 4.
    Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Applicable Algebra in Engineering, Communication and Computing 20(1), 73–121 (2009); (1997 Tech. rep. IT306 of the LIFL) Google Scholar
  5. 5.
    Boulier, F., Lemaire, F., Maza, M.M.: Well known theorems on triangular systems and the D 5 principle. In: Proceedings of Transgressive Computing 2006, Granada, Spain, pp. 79–91 (2006), http://hal.archives-ouvertes.fr/hal-00137158
  6. 6.
    Bouziane, D., Rody, A.K., Maârouf, H.: Unmixed–Dimensional Decomposition of a Finitely Generated Perfect Differential Ideal. Journal of Symbolic Computation 31, 631–649 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Busé, L., Mourrain, B.: Explicit factors of some iterated resultants and discriminants. Mathematics of Computation 78, 345–386 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive Triangular Decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Graduate Texts in Mathematics, vol. 185. Springer, New York (2005)MATHGoogle Scholar
  10. 10.
    Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of Gröbner bases by change of orderings. Journal of Symbolic Computation 16, 329–344 (1993)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hubert, É.: Factorization free decomposition algorithms in differential algebra. Journal of Symbolic Computation 29(4,5), 641–662 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kalkbrener, M.: A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties. Journal of Symbolic Computation 15, 143–167 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)MATHGoogle Scholar
  14. 14.
    Lemaire, F., Maza, M.M., Pan, W., Xie, Y.: When does (T) equal sat(T)? In: Proceedings of thee International Symposium on Symbolic and Algebraic Computation, pp. 207–214. ACM Press, New York (2008)Google Scholar
  15. 15.
    Li, B., Wang, D.: An Algorithm for Transforming Regular Chain into Normal Chain. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 236–245. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Ritt, J.F.: Differential Algebra. Dover Publications Inc., New York (1950)CrossRefMATHGoogle Scholar
  17. 17.
    van der Waerden, B.L.: Algebra, 7th edn. Springer, Berlin (1966)Google Scholar
  18. 18.
    Wang, D.: Computing Triangular Systems and Regular Systems. Journal of Symbolic Computation 30, 221–236 (2000)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a class of inequality-type theorems. Science in China Series F: Information Sciences 44(1), 33–49 (2001)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Yang, L., Zhang, J., Hou, X.: An Efficient Decomposition Algorithm for Geometry Theorem Proving Without Factorization. In: Proceedings of ASCM, pp. 33–41 (1995)Google Scholar
  21. 21.
    Zariski, O., Samuel, P.: Commutative Algebra. In: Commutative Algebra. Graduate Texts in Mathematics, Van Nostrand, New York, vol. 28,29. Springer, Heidelberg (1958)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • François Boulier
    • 1
  • François Lemaire
    • 1
  • Alexandre Sedoglavic
    • 1
  1. 1.Université Lille I, LIFLVilleneuve d’AscqFrance

Personalised recommendations