Symbolic-Manipulation Constructions of Hilbert-Space Metrics in Quantum Mechanics
Conference paper
- 2 Citations
- 468 Downloads
Abstract
The recently formulated quantum-mechanics problem of the determination of the Hilbert-space metric Θ which renders a given Hamiltonian H self-adjoint is addressed. Via an exactly solvable example of the so called Gegenbauerian quantum-lattice oscillator it is demonstrated that the construction (basically, the solution of the so called Dieudonné’s operator equation) and analysis of suitable Θ = Θ(H) (i.e., the determination of their domain’s “exceptional-point” boundary) may enormously be facilitated via symbolic algebraic manipulations and via the MAPLE-supported numerics and graphics.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Znojil, M.: Fundamental length in quantum theories with PT-symmetric Hamiltonians. Phys. Rev. D. 80, 045022, 13 pages (2009)Google Scholar
- 2.Znojil, M.: Gegenbauer-solvable quantum chain model. Phys. Rev. A 82, 052113,10 pages (2010)Google Scholar
- 3.Znojil, M.: Scattering theory using smeared non-Hermitian potentials. Phys. Rev. D. 80, 045009, 12 pages (2009)Google Scholar
- 4.Znojil, M.: Cryptohermitian picture of scattering using quasilocal metric operators. Symmetry, Integrability and Geometry: Methods and Applications 5, 085, 21 pages (2009)Google Scholar
- 5.Znojil, M.: Determination of the domain of the admissible matrix elements in the four-dimensional PT-symmetric anharmonic model. Phys. Lett. A 367, 300–306 (2007)Google Scholar
- 6.Znojil, M.: Fundamental length in quantum theories with PT-symmetric Hamiltonians II: The case of quantum graphs. Phys. Rev. D. 80, 105004, 20 pages (2009)Google Scholar
- 7.Znojil, M.: Anomalous real spectra of non-Hermitian quantum graphs in a strong-coupling regime. J. Phys. A: Math. Theor. 43, 335303 (2010)Google Scholar
- 8.Znojil, M.: Complete set of inner products for a discrete PT-symmetric square-well Hamiltonian. J. Math. Phys. 50, 122105 (2009)Google Scholar
- 9.Dieudonne, J.: Quasi-Hermitian operators. In: Proc. Int. Symp. Lin. Spaces, pp. 115–122. Pergamon, Oxford (1961)Google Scholar
- 10.Scholtz, F.G., Geyer, H.B., Hahne, F.J.H.: Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle. Ann. Phys. (NY) 213, 74 (1992)Google Scholar
- 11.Bender, C.M.: Making sense of non-hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018Google Scholar
- 12.Znojil, M.: Three-Hilbert-space formulation of Quantum Mechanics. Symmetry, Integrability and Geometry: Methods and Applications 5, 001, 19 pages (2009)Google Scholar
- 13.Char, B.W., et al.: Maple V Language Reference Manual. Springer, New York (1993)Google Scholar
- 14.Gradshteyn, I.S., Ryzhik, I.M.: Tablicy integralov, summ, ryadov i proizvedenii, Nauka, Moscow (1971)Google Scholar
- 15.Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1970)Google Scholar
- 16.Siegl, P.: Supersymmetric quasi-Hermitian Hamiltonians with point interactions on a loop. J. Phys. A: Math. Theor. 41, 244025 (2008)Google Scholar
- 17.Dorey, P., Dunning, C., Tateo, R.: The ODE/IM correspondence. J. Phys. A: Math. Theor. 40, R205–R283 (2007)Google Scholar
- 18.Davies, E.B.: Linear Operators and Their Spectra. Cambridge University Press, Cambridge (2007)Google Scholar
- 19.Mostafazadeh, A.: Pseudo-Hermitian Representation of Quantum Mechanics. Int. J. Geom. Meth. Mod. Phys. 7, 1191–1306 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam Dynamics in PT Symmetric Optical Lattices. Phys. Rev. Lett. 100, 103904 (2008)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011