Acceleration of the Inversion of Triangular Toeplitz Matrices and Polynomial Division
Conference paper
- 1 Citations
- 527 Downloads
Abstract
Computing the reciprocal of a polynomial in z modulo a power z n is well known to be closely linked to polynomial division and equivalent to the inversion of an n×n triangular Toeplitz matrix. The degree k of the polynomial is precisely the bandwidth of the matrix, and so the matrix is banded iff k ≪ n. We employ the above equivalence and some elementary but novel and nontrivial techniques to obtain minor yet noticeable acceleration of the solution of the cited fundamental computational problems.
Keywords
Reciprocal of a polynomial modulo a power Polynomial division Triangular Toeplitz matrix inversion Banded triangular Toeplitz matricesPreview
Unable to display preview. Download preview PDF.
References
- 1.Kailath, T., Kung, S.Y., Morf, M.: Displacement Ranks of Matrices and Linear Equations. Journal Math. Analysis and Appls. 68(2), 395–407 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Bini, D., Pan, V.Y.: Polynomial and Matrix Computations, Volume 1. Fundamental Algorithms. Birkhäuser, Boston (1994)Google Scholar
- 3.Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms. Birkhäuser/Springer, Boston/New York (2001)CrossRefzbMATHGoogle Scholar
- 4.Chan, R.: Toeplitz preconditioners for Toeplitz systems with nonnegative generating functions. IMA J. Numer. Anal. 11, 333–345 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Lin, F.R., Ching, W.K.: Inverse Toeplitz preconditioners for Hermitian Toeplitz systems. Numer. Linear Algebra Appl. 12, 221–229 (2005)Google Scholar
- 6.Bini, D., Pan, V.Y.: Polynomial Division and Its Computational Complexity. Journal of Complexity 2, 179–203 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Pan, V.Y.: Complexity of Computations with Matrices and Polynomials. SIAM Review 34(2), 225–262 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Sieveking, M.: An Algorithm for Division of Power Series. Computing 10, 153–156 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Bini, D.: Parallel Solution of Certain Toeplitz Linear Systemns. SIAM J. on Computing 13(2), 268–276 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Bini, D., Pan, V.Y.: Improved Parallel Polynomial Division. SIAM J. on Computing 22(3), 617–627 (1993); Proc. version in FOCS 1992, pp. 131–136. IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
- 11.Reif, J.H., Tate, S.R.: Optimum Size Division Circuits. SIAM J. on Computing 19(5), 912–925 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Pan, V.Y., Landowne, E., Sadikou, A.: Polynomial Division with a Remainder by Means of Evaluation and Interpolation. Information Processing Letters 44, 149–153 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Algorithms. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
- 14.Borodin, A.B., Munro, I.: Computational Complexity of Algebraic and Numeric Problems. American Elsevier, New York (1975)zbMATHGoogle Scholar
- 15.von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003) (first edition, 1999)Google Scholar
- 16.Commenges, D., Monsion, M.: Fast inversion of triangular Toeplitz matrices. IEEE Trans. Automat. Control AC-29, 250–251 (1984)Google Scholar
- 17.Bernstein, D.J.: Removing redundancy in high-precision Newton iteration (2004), http://cr.yp.to/fastnewton.html#fastnewton-paper
- 18.van der Hoeven, J.: Newton’s method and FFT trading. Journal of Symbolic Computing 45(8), 857–878 (2010)Google Scholar
- 19.Hanrot, G., Zimmermann, P.: Newton iteration revisited, http://www.loria.fr/~zimmerma/papers/fastnewton.ps.gz
- 20.Schoenhage, A., Vetter, E.: A New Approach to Resultant Computations and Other Algorithms with Exact Division. In: European Symposium on Algorithms, pp. 448–459 (1994)Google Scholar
- 21.Schonhage, A.: Variations on computing reciprocals of power series. Inf. Process. Lett. 74(1-2), 41–46 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Harvey, D.: aster algorithms for the square root and reciprocal of power series. Math. Comp. 80, 387–394 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Murphy, B.: Short-circuited FFTs for computing paritally known convolutions (2010), http://comet.lehman.cuny.edu/bmurphy/research/ScFFT.pdf
- 24.Dongarra, J., Hammarling, S., Sorensen, D.: Block reduction of matrices to condensed form for eigenvalue computations. J. Comp. Appl. Math. 27, 215 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011