Algebraic Structures as Typed Objects

  • Heinz Kredel
  • Raphael Jolly
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6885)


Following the research direction of strongly typed, generic, object oriented computer algebra software, we examine the modeling of algebraic structures as typed objects in this paper. We discuss the design and implementation of algebraic and transcendental extension fields together with the modeling of real algebraic and complex algebraic extension fields. We will show that the modeling of the relation between algebraic and real algebraic extension fields using the delegation design concept has advantages over the modeling as sub-types using sub-class implementation. We further present a summary of design problems, which we have encountered so far with our implementation in Java and present possible solutions in Scala.


Real Root Algebraic Structure Polynomial Ring Computer Algebra Algebraic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kredel, H., Jolly, R.: Generic, type-safe and object oriented computer algebra software. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 162–177. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Watt, S.: Aldor. In: Computer Algebra Handbook, pp. 265–270. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Odersky, M.: The Scala programming language. Technical report (2003-2011), (accessed June 2011)
  4. 4.
    Jenks, R., Sutor, R. (eds.): Axiom The Scientific Computation System. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  5. 5.
    Rubio, J., Sergeraert, F.: Constructive algebraic topology. Bulletin des Sciences Mathematiques 126(5), 389–412 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Calmet, J., Seiler, W.M.: Computer algebra and field theories. Mathematics and Computers in Simulation 45, 33–37 (1998)CrossRefzbMATHGoogle Scholar
  7. 7.
    Drescher, K.: MuPAD multi processing algebra data tool - Axioms, Categories and Domains. Technical report, Manuscript available via Citeseer (1995),
  8. 8.
    Mechveliani, S.: DoCon - The Algebraic Domain Constructor. Technical report (2007),
  9. 9.
    Maza, M.M., Stephenson, B., Watt, S.M., Xie, Y.: Multiprocessed parallelism support in ALDOR on SMPs and multicores. In: PASCO, pp. 60–68 (2007)Google Scholar
  10. 10.
    Taboada, G., Tourino, J., Doallo, R.: Java for high performance computing: Assessment of current research and practice. In: Proc. PPPJ 2009, pp. 30–39. ACM, New York (2009)Google Scholar
  11. 11.
    Kredel, H.: The Java algebra system (JAS). Technical report (since 2000),
  12. 12.
    Kredel, H.: Evaluation of a java computer algebra system. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 121–138. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Kredel, H.: On a Java Computer Algebra System, its performance and applications. Science of Computer Programming 70(2-3), 185–207 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Reading (1995); Entwurfsmuster, Addison-Wesley, Deutsch (1996)Google Scholar
  15. 15.
    Grabmaier, J., Kaltofen, E., Weispfenning, V. (eds.): Computer Algebra Handbook. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Jython Developers: Jython implementation of the high-level, dynamic, object-oriented language Python written in 100% pure Java. Technical report (1997-2011), (accessed June 2011)
  17. 17.
    JRuby Developers: JRuby a Java powered Ruby implementation. Technical report (2003-2011), (accessed June 2011)
  18. 18.
    Dragan, L., Watt, S.: Type specialization in aldor. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 73–84. Springer, Heidelberg (2010)Google Scholar
  19. 19.
    Odersky, M., Cremet, V., Röckl, C., Zenger, M.: A nominal theory of objects with dependent types. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 303–329. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Jolly, R.: Object Scala found - a JSR223-compliant version of the Scala interpreter. In: Scala Days 2011 (to appear, 2011) Google Scholar
  21. 21.
    Becker, T., Weispfenning, V.: Gröbner Bases - A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics. Springer, Heidelberg (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Heinz Kredel
    • 1
  • Raphael Jolly
    • 2
  1. 1.IT-CenterUniversity of MannheimGermany
  2. 2.DatabeansParisFrance

Personalised recommendations