Skip to main content

On Muldowney’s Criteria for Polynomial Vector Fields with Constraints

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6885))

Included in the following conference series:

Abstract

We study Muldowney’s extension of the classical Bendixson-Dulac criterion for excluding periodic orbits to higher dimensions for polynomial vector fields. Using the formulation of Muldowney’s sufficient criteria for excluding periodic orbits of the parameterized vector field on a convex set as a quantifier elimination problem over the ordered field of the reals we provide case studies of some systems arising in the life sciences. We discuss the use of simple conservation constraints and the use of parametric constraints for describing simple convex polytopes on which periodic orbits can be excluded by Muldowney’s criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ilyashenko, Y.: Centennial history of Hilbert’s 16th Problem. Bull. Am. Math. Soc., New Ser. 39(3), 301–354 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Osuna, O., Villaseñor, G.: On the Dulac functions. Qualitative Theory of Dynamical Systems, 1–7 (2011)

    Google Scholar 

  3. Cherkas, L., Grin, A.: On a Dulac function for the Kukles system. Differential Equations 46, 818–826 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cherkas, L.: Quadratic systems with maximum number of limit cycles. Differential Equations 45, 1440–1450 (2009), doi: 10.1134/S0012266109100061.

    Google Scholar 

  5. Cherkas, L.A., Grin, A.: Algebraic aspects of finding a Dulac function for polynomial autonomous systems on the plane. Differential Equations 37, 411–417 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cherkas, L.A.: Dulac function for polynomial autonomous systems on a plane. Differential Equations 33, 692–701 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Muldowney, J.S.: Compound matrices and ordinary differential equations. Rocky Mt. J. Math. 20(4), 857–872 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Weber, A., Sturm, T., Abdel-Rahman, E.O.: Algorithmic global criteria for excluding oscillations. Bulletin of Mathematical Biology 73(4), 899–917 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Weber, A., Sturm, T., Seiler, W.M., Abdel-Rahman, E.O.: Parametric qualitative analysis of ordinary differential equations: Computer algebra methods for excluding oscillations (Extended abstract) (Invited talk). In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 267–279. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Tuckwell, H.C., Wan, F.Y.M.: On the behavior of solutions in viral dynamical models. BioSystems 73(3), 157–161 (2004)

    Article  Google Scholar 

  11. Bendixson, I.: Sur les curbes définiés par des équations différentielles. Acta Math. 24, 1–88 (1901)

    Google Scholar 

  12. Dulac, H.: Recherche des cycles limites. CR Acad. Sci. Paris 204, 1703–1706 (1937)

    MATH  Google Scholar 

  13. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Heidelberg (1983)

    Book  MATH  Google Scholar 

  14. Sturm, T., Weber, A.: Investigating generic methods to solve hopf bifurcation problems in algebraic biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 200–215. Springer, Heidelberg (2008)

    Google Scholar 

  15. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Mathematics in Computer Science 2(3), 493–515 (2009); Special issue on ‘Symbolic Computation in Biology’

    Google Scholar 

  16. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. Journal of Symbolic Computation 30(2), 161–179 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Weber, A.: Quantifier elimination on real closed fields and differential equations. In: Löwe, B. (ed.) Algebra, Logic, Set Theory – Festschrift für Ulrich Felgner zum 65, Geburtstag. Studies in Logic, vol. 4, pp. 291–315. College Publications (2007)

    Google Scholar 

  18. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56–64. Springer, Heidelberg (2008)

    Google Scholar 

  19. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E., Ürgüplü, A.: On proving the absence of oscillations in models of genetic circuits. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007)

    Google Scholar 

  20. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6), 1361–1382 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems. Mathematics in Computer Science 1(3), 507–539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing 8(2), 85–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, X.D., van den Driessche, P.: A threshold result for an epidemiological model. Journal of Mathematical Biology 30(6), 647–654 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hadeler, K.P., van den Driessche, P.: Backward bifurcation in epidemic control. Mathematical Biosciences 146(1), 15–35 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weber, A., Weber, M., Milligan, P.: Modeling epidemics caused by respiratory syncytial virus (RSV). Mathematical Biosciences 172(2), 95–113 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods for investigating equilibria in epidemic modeling. Journal of Symbolic Computation 41(11), 1157–1173 (2006); Special Issue on the Occasion of Volker Weispfenning’s 60th Birthday

    Google Scholar 

  27. Ponciano, J.M., Capistrán, M.A.: First principles modeling of nonlinear incidence rates in seasonal epidemics. PLoS Computational Biology 7(2), e1001079 (2011)

    Google Scholar 

  28. Bonhoeffer, S., Coffin, J.M., Nowak, M.A.: Human immunodeficiency virus drug therapy and virus load. The Journal of Virology 71(4), 3275 (1997)

    Google Scholar 

  29. Brown, C.W.: QEPCAD B: A system for computing with semi-algebraic sets via cylindrical algebraic decomposition. ACM SIGSAM Bulletin 38(1), 23–24 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Errami, H., Seiler, W.M., Sturm, T., Weber, A. (2011). On Muldowney’s Criteria for Polynomial Vector Fields with Constraints. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2011. Lecture Notes in Computer Science, vol 6885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23568-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23568-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23567-2

  • Online ISBN: 978-3-642-23568-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics