Advertisement

Normal Forms of Two p: − q Resonant Polynomial Vector Fields

  • Victor Edneral
  • Valery G. Romanovski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6885)

Abstract

We investigate a property of normal forms of p: − q resonant vector fields, which is related to isochronicity. The problem is reduced to studying polynomial ideals and their varieties which is performed using tools of computational algebra.

Keywords

planar differential equations isochronicity linearizability normal forms polynomial ideals computational algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Algaba, A., Reyes, M.: Characterizing isochronous points and computing isochronous sections. J. Math. Anal. Appl. 355, 564–576 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amel’kin, V.V., Lukashevich, N.A., Sadovskii, A.P.: Nonlinear Oscillations in Second Order Systems. Belarusian State University, Minsk (1982) (in Russian)Google Scholar
  3. 3.
    Bardet, M., Boussaada, I., Chouikha, A.R., Strelcyn, J.-M.: Isochronicity conditions for some planar polynomial systems II. Bull. Sci. Math. 135, 230–249 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bibikov, Y.N.: Local Theory of Nonlinear Analytic Ordinary Differential Equations. Lecture Notes in Mathematics, vol. 702. Springer, New York (1979)zbMATHGoogle Scholar
  5. 5.
    Bruno, A.D.: Local Methods in Nonlinear Differential Equations. Nauka, Moscow (1979) (in Russian); Springer, Berlin (1989) Google Scholar
  6. 6.
    Chavarriga, J., Sabatini, M.: A survey of isochronous centers. Qual. Theory Dyn. Syst. 1, 1–70 (1999)Google Scholar
  7. 7.
    Christopher, C., Mardešić, P., Rousseau, C.: Normalizable, integrable, and linearizable saddle points for complex quadratic systems in ℂ2. J. Dynam. Control Systems 9, 311–363 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Edneral, V.F.: On algorithm of the normal form building. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 134–142. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Fronville, A., Sadovski, A.P., Zoladek, H.: Solution of the 1: − 2 resonant center problem in the quadratic case. Fund. Math. 157, 191–207 (1998)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomials. J. Symbolic Comput. 6, 146–167 (1988)zbMATHGoogle Scholar
  11. 11.
    Giné, J., Grau, M.: Characterization of isochronous foci for planar analytic differential systems. Proc. Roy. Soc. Edinburgh Sect. A 135(5), 985–998 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Greuel, G.M., Pfister, G., Schönemann, H.: Singular 3.0 A computer algebra system for polynomial computations. Centre for Computer Algebra. University of Kaiserslautern (2005), http://www.singular.uni-kl.de
  13. 13.
    Han, M., Romanovski, V.G.: Isochronicity and normal forms of polynomial systems of ODEs. Submitted to Journal of Symbolic ComputationGoogle Scholar
  14. 14.
    Hu, Z., Romanovski, V.G., Shafer, D.S.: 1:-3 resonant centers on image with homogeneous cubic nonlinearities. Computers & Mathematics with Applications 56(8), 1927–1940 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kadyrsizova, Z., Romanovski, V.: Linearizability of 1:-3 resonant system with homogeneous cubic nonlinearities. In: International Symposium on Symbolic and Algebraic Computation (ISSAC 2008), Hagenberg, Austria, July 20-23, pp. 255–260. The Association for Computing Machinery, New York (2008)Google Scholar
  16. 16.
    Kukles, I.S., Piskunov, N.S.: On the isochronism of oscillations for conservative and nonconservative systems. Dokl. Akad. Nauk. SSSR 17(9), 467–470 (1937)Google Scholar
  17. 17.
    Pfister, G., Decker, W., Schönemann, H., Laplagne, S.: primdec.lib. A Singular 3.0 library for computing primary decomposition and radical of ideals (2005)Google Scholar
  18. 18.
    Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: a Computational Algebra Approach. Birkhäuser Boston, Inc., Boston (2009)zbMATHGoogle Scholar
  19. 19.
    Rudenok, A.E.: Strong isochronicity of a center and a focus of systems with homogeneous nonlinearities. Differ. Uravn. 45(2), 154–161 (2009) (in Russian); translation in Differ. Equ. 45(2), 159–167 (2009)Google Scholar
  20. 20.
    Wang, Q.L., Liu, Y.R.: Generalized isochronous centers for complex systems. Acta Math. Sin. (Engl. Ser.) 26(9), 1779–1792 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, P.S., Guy, M.J.T., Davenport, J.H.: P-adic reconstruction of rational numbers. ACM SIGSAM Bull. 16(2), 2–3 (1982)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Victor Edneral
    • 1
  • Valery G. Romanovski
    • 2
    • 3
  1. 1.Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State UniversityMoscowRussia
  2. 2.CAMTP - Center for Applied Mathematics and Theoretical PhysicsUniversity of MariborMariborSlovenia
  3. 3.Faculty of Natural Science and MathematicsUniversity of MariborMariborSlovenia

Personalised recommendations