• Adam Szymkiewicz
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)


Soils and rocks in the uppermost layer of Earth’s crust are typically unsaturated, i.e. their pores are filled partially with water and partially with air. Water flow in the unsaturated zone has important implications for protection and management of groundwater resources, as well as for geotechnical engineering, agriculture and other fields of human activity. This book focuses on two aspects of modelling water flow in partially saturated porous media. The first one is related to the computation of the average permeabilities between nodes of a numerical grid. This is an important step in the discretization of the governing equation for unsaturated flow. The second topic concerns the development of large-scale equations describing unsaturated flow in heterogeneous porous media. In this chapter the objective and structure of the book are outlined.


Porous Medium Relative Permeability Representative Elementary Volume Unsaturated Zone Vadose Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baker D (1995) Darcian weighted interblock conductivity means for vertical unsaturated flow. Ground Water 33(3):385–390. doi: 10.1111/j.1745-6584.1995.tb00294.x Google Scholar
  2. 2.
    Belfort B, Lehmann F (2005) Comparison of equivalent conductivities for numerical simulation of one-dimensional unsaturated flow. Vadose Zone J 4(4):1191–1200. doi: 10.2136/vzj2005.0007 Google Scholar
  3. 3.
    Bentsen R (2001) The physical origin of interfacial coupling in two-phase flow through porous media. Transp Porous Media 44(1):109–122. doi: 10.1023/A:1010791526239 Google Scholar
  4. 4.
    Celia M, Bouloutas E, Zarba R (1990) A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour Res 26(7):1483–1496. doi: 10.1029/WR026i007p01483 Google Scholar
  5. 5.
    Chenaf D, Chapuis R (2007) Seepage face height, water table position, and well efficiency at steady state. Ground Water 45(2):168–177. doi: 10.1111/j.1745-6584.2006.00277.x Google Scholar
  6. 6.
    Dagan G (1989) Flow and transport in porous formations. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Darcy H (1856) Les fontaines publiques de la ville de Dijon. Dalmont, ParisGoogle Scholar
  8. 8.
    Evett S (2002) Water and energy balances at soil-plant-atmosphere interfaces. In: Soil physics companion, CRC Press, Boca Raton, pp 127–188Google Scholar
  9. 9.
    Feddes R, Kowalik P, Zaradny H (1978) Simulation of field water use and crop yield. Wageningen, PUDOCGoogle Scholar
  10. 10.
    Fredlund D, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New YorkCrossRefGoogle Scholar
  11. 11.
    Furman A (2008) Modeling coupled surface-subsurface flow processes: a review. Vadose Zone J 7(2):741–756. doi: 10.2136/vzj2007.0065 Google Scholar
  12. 12.
    Gelhar L (1993) Stochastic subsurface hydrology. Prentice Hall, Engelwood CliffsGoogle Scholar
  13. 13.
    Harter T, Hopmans J (2004) Role of vadose-zone flow processes in regional-scale hydrology: review, opportunities and challenges. In: Unsaturated zone modelling: progress, challenges and applications, Kluwer, DordrechtGoogle Scholar
  14. 14.
    Hassanizadeh M, Gray W (1993) Toward an improved description of the physics of two-phase flow. Adv Water Resour 16(1):53–67. doi: 10.1016/0309-1708(93)90029-F Google Scholar
  15. 15.
    Haverkamp R, Vauclin M (1979) A note on estimating finite difference interblock hydraulic conductivity values for transient unsaturated flow. Water Resour Res 15(1):181–187. doi: 10.1029/WR015i001p0018 Google Scholar
  16. 16.
    Helmig R (1997) Multiphase flow and transport processes in the subsurface: a contribution to the modeling of the hydrosystems. Springer, BerlinGoogle Scholar
  17. 17.
    Hillel D (1998) Environmental soil physics. Academic Press, San DiegoGoogle Scholar
  18. 18.
    Hunt R, Prudic D, Walker J, Anderson M (2008) Importance of unsaturated zone flow for simulating recharge in a humid climate. Ground Water 46(4):551–560. doi: 10.1111/j.1745-6584.2007.00427.x Google Scholar
  19. 19.
    Knudby C, Carrera J, Bumgardner J, Fogg G (2006) Binary upscaling—the role of connectivity and a new formula. Adv Water Resour 29(4):590–604. doi: 10.1016/j.advwatres.2005.07.002 Google Scholar
  20. 20.
    Kowalik P (2007) Zarys fizyki gruntów (Fundamentals of soil physics). Wydawnictwa Politechniki Gdańskiej, GdańskGoogle Scholar
  21. 21.
    Lewandowska J, Auriault JL (2004) Modeling of unsaturated water flow in soils with highly permeable inclusions. C R Mec 332(1):91–96CrossRefGoogle Scholar
  22. 22.
    Lewandowska J, Laurent JP (2001) Homogenization modeling and parametric study of moisture transfer in an unsaturated heterogeneous porous medium. Transp Porous Media 45(3):321–345. doi: 10.1023/A:1012450327408 Google Scholar
  23. 23.
    Lewandowska J, Szymkiewicz A, Burzyński K, Vauclin M (2004) Modeling of unsaturated water flow in double-porosity soils by the homogenization approach. Adv Water Resour 27(3):283–296. doi: 10.1016/j.advwatres.2003.12.004
  24. 24.
    Lewandowska J, Szymkiewicz A, Auriault JL (2005) Upscaling of Richards equation for soils containing highly conductive inclusions. Adv Water Resour 28(11):1159–1170. doi: 10.1016/j.advwatres.2005.03.006 Google Scholar
  25. 25.
    Lu N, Likos W (2004) Unsaturated soil mechanics. Wiley, HobokenGoogle Scholar
  26. 26.
    Manthey S, Hassanizadeh M, Helmig R (2005) Macro-scale dynamic effects in homogeneous and heterogeneous porous media. Transp Porous Media 58(1–2):121–145. doi: 10.1007/s11242-004-5472-6 Google Scholar
  27. 27.
    Miller C, Abhishek C, Farthing M (2006) A spatially and temporally adaptive solution of Richards’ equation. Adv Water Resour 29(4):525–545. doi: 10.1016/j.advwatres.2005.06.008
  28. 28.
    Murray E, Sivakumar V (2010) Unsaturated soils. A fundamental interpretation of soil behaviour. Wiley-Blackwell, ChichesterGoogle Scholar
  29. 29.
    Niessner J, Hassanizadeh S (2008) A model for two-phase flow in porous media including fluid-fluid interfacial area. Water Resour Res 44:W08439. doi: 10.1029/2007WR006721
  30. 30.
    Oettl G, Stark R, Hofstetter G (2004) Numerical simulation of geotechnical problems based on a multi-phase finite element approach. Comput Geotech 31(8):643–664. doi: 10.1016/j.compgeo.2004.10.002 Google Scholar
  31. 31.
    Ossowski R, Sikora Z (2004) Numeryczne modelowanie sondowania statycznego CPTU (Numerical modeling of static CPTU tests). Politechnika Gdańska, GdańskGoogle Scholar
  32. 32.
    Pachepsky Y, Timlin D, Rawls W (2003) Generalized Richards equation to simulate water transport in unsaturated soils. J Hydrol 272(1–4):3–13. doi: 10.1016/S0022-1694(02)00251–2 Google Scholar
  33. 33.
    Pinder G, Gray W (2008) Essentials of multiphase flow and transport in porous media. Wiley, HobokenCrossRefGoogle Scholar
  34. 34.
    Richards L (1931) Capillary conduction of liquids through porous medium. Physics 1:318–333CrossRefGoogle Scholar
  35. 35.
    Shah N, Ross M (2009) Variability in specific yield under shallow water table conditions. J Hydrol Eng 14(12):1290–1298. doi: 10.1061/(ASCE)HE.1943-5584.0000121 Google Scholar
  36. 36.
    Szymkiewicz A (2009) Approximation of internodal conductivities in numerical simulation of 1D infiltration, drainage and capillary rise in unsaturated soils. Water Resour Res 45:W10403. doi: 10.1029/2008WR007654
  37. 37.
    Szymkiewicz A, Burzyński K (2011) Computing internodal conductivities in numerical modeling of two dimensional unsaturated flow on rectangular grid. Arch Civil Eng 57(2):215–225. doi: 10.2478/v.10169-011-0016-2
  38. 38.
    Szymkiewicz A, Helmig R (2011) Comparison of conductivity averaging methods for one-dimensional unsaturated flow in layered soils. Adv Water Resour 34(8):1012–1025. doi: 10.1016/j.advwatres.2011.05.011
  39. 39.
    Szymkiewicz A, Lewandowska J (2006) Unified macroscopic model for unsaturated water flow in soils of bimodal porosity. Hydrol Sci J 51(6):1106–1124CrossRefGoogle Scholar
  40. 40.
    Szymkiewicz A, Lewandowska J, Angulo-Jaramillo R, Butlańska J (2008) Two-scale modeling of unsaturated water flow in a double-porosity medium under axi-symmetric conditions. Can Geotech J 45(2):238–251. doi: 10.1139/T07-096 Google Scholar
  41. 41.
    Szymkiewicz A, Helmig R, Kuhnke H (2011) Two-phase flow in heterogeneous porous media with non-wetting phase trapping. Trans Porous Media 86(1):27–47. doi: 10.1007/s11242-010-9604-x
  42. 42.
    Szymkiewicz A, Helmig R, Neuweiler I (2012) Upscaling unsaturated flow in binary porous media with air entry pressure effects. Water Resour Res 48:W04522. doi: 10.1029/2011WR010893
  43. 43.
    Thoms R, Johnson R, Healy R (2006) Users guide to the variably saturated flow (VSF) process for MODFLOW. Technical Report, USGSGoogle Scholar
  44. 44.
    Twarakavi N, Simunek J, Seo S (2008) Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone J 7(2):757–768. doi: 10.2136/vzj2007.0082
  45. 45.
    Vereecken H, Kasteel R, Vanderborght J, Harter T (2007) Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: a review. Vadose Zone J 6(1):1–28. doi: 10.2136/vzj2006.0055 Google Scholar
  46. 46.
    Warrick A (1991) Numerical approximation of Darcian flow through unsaturated soil. Water Resour Res 27(6):1215–1222. doi: 10.1029/91WR00093
  47. 47.
    Warrick A (2002) Soil physics companion. CRC Press, Boca RatonGoogle Scholar
  48. 48.
    Weill S, Mouche E, Patin J (2009) A generalized Richards equation for surface/subsurface flow modelling. J Hydrol 366(1–4):9–20. doi: 10.1016/j.jhydrol.2008.12.007 Google Scholar
  49. 49.
    Whitaker S (1986) Flow in porous media II: the governing equations for immiscible, two-phase flow. Transp Porous Media 1(2):105–125. doi: 10.1007/BF00714688
  50. 50.
    Xu T, Sonnenthal E, Spycher N, Pruess K (2008) TOUGHREACT user’s guide: A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media, v1.2.1. Technical Report, Lawrence Berkeley National LaboratoryGoogle Scholar
  51. 51.
    Xu YQ, Unami K, Kawachi T (2003) Optimal hydraulic design of earth dam cross section using saturated-unsaturated seepage flow model. Adv Water Resour 26(1):1–7. doi: 10.1016/S0309-1708(02)00124-0
  52. 52.
    Zhang D (2002) Stochastic methods for flow in porous media: coping with uncertainties. Academic Press, San DiegoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdanskPoland

Personalised recommendations