Adjusting the Trade-Off between Privacy Guarantees and Computational Cost in Secure Hardware PIR

  • Spiridon Bakiras
  • Konstantinos F. Nikolopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6933)


Database queries present a potential privacy risk to users, as they may disclose sensitive information about the person issuing the query. Consequently, privacy preserving query processing has gained significant attention in the literature, and numerous techniques have been proposed that seek to hide the content of the queries from the database server. Secure hardware-assisted private information retrieval (PIR) is currently the only practical solution that can be leveraged to build algorithms that provide perfect privacy. Nevertheless, existing approaches feature amortized page retrieval costs and, for large databases, some queries may lead to excessive delays, essentially taking the database server offline for large periods of time. In this paper, we address this drawback and introduce a novel approach that sacrifices some degree of privacy in order to provide fast and constant query response times. Our method leverages the internal cache of the secure hardware to constantly reshuffle the database pages in order to create sufficient uncertainty regarding the exact location of an arbitrary page. We give a formal definition of the privacy level of our algorithm and illustrate how to enforce it in practice. Based on the performance characteristics of the current state-of-the-art secure hardware platforms, we show that our method can provide low page access times, even for very large databases.


Query Processing Cache Size Query Response Time Privacy Level Private Information Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, D., Abbadi, A.E., Emekçi, F., Metwally, A.: Database management as a service: Challenges and opportunities. In: ICDE (2009)Google Scholar
  2. 2.
    Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data. In: SIGMOD (2004)Google Scholar
  3. 3.
    Ardagna, C.A., Cremonini, M., Damiani, E., di Vimercati, S.D.C., Samarati, P.: Location privacy protection through obfuscation-based techniques. In: DBSec (2007)Google Scholar
  4. 4.
    Barbaro, M., Zeller, T.: A face is exposed for AOL searcher no. 4417749. The New York Times (August 9, 2006)Google Scholar
  5. 5.
    Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.E.: Breaking the O(n 1/(2k − 1)) barrier for information-theoretic private information retrieval. In: FOCS (2002)Google Scholar
  6. 6.
    Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: FOCS (1995)Google Scholar
  8. 8.
    Duckham, M., Kulik, L.: Simulation of obfuscation and negotiation for location privacy. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 31–48. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Garrett, P.: Making, Breaking Codes: Introduction to Cryptology, 1st edn. Prentice-Hall, Englewood Cliffs (2001)Google Scholar
  10. 10.
    Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries in location based services: Anonymizers are not necessary. In: SIGMOD (2008)Google Scholar
  12. 12.
    Goldberg, I.: Improving the robustness of private information retrieval. In: IEEE Symposium on Security and Privacy (2007)Google Scholar
  13. 13.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. Journal of the ACM 43(3), 431–473 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Iliev, A., Smith, S.: Private information storage with logarithmic-space secure hardware. In: i-NetSec (2004)Google Scholar
  15. 15.
    Jones, R., Kumar, R., Pang, B., Tomkins, A.: I know what you did last summer: Query logs and user privacy. In: CIKM (2007)Google Scholar
  16. 16.
    Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based identity inference in anonymous spatial queries. TKDE 19(12), 1719–1733 (2007)Google Scholar
  17. 17.
    Khoshgozaran, A., Shahabi, C., Shirani-Mehr, H.: Location privacy: Going beyond k-anonymity, cloaking and anonymizers. In: KAIS (2010)Google Scholar
  18. 18.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-private information retrieval. In: FOCS (1997)Google Scholar
  19. 19.
    Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Mokbel, M.F., Chow, C.Y., Aref, W.G.: The New Casper: Query processing for location services without compromising privacy. In: VLDB (2006)Google Scholar
  21. 21.
    Murugesan, M., Clifton, C.: Providing privacy through plausibly deniable search. In: SDM (2009)Google Scholar
  22. 22.
    Pang, H., Ding, X., Xiao, X.: Embellishing text search queries to protect user privacy. PVLDB 3(1), 598–607 (2010)Google Scholar
  23. 23.
    Papadopoulos, S., Bakiras, S., Papadias, D.: Nearest neighbor search with strong location privacy. PVLDB 3(1), 619–629 (2010)Google Scholar
  24. 24.
    Wang, S., Ding, X., Deng, R.H., Bao, F.: Private information retrieval using trusted hardware. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 49–64. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Williams, P., Sion, R.: Usable PIR. In: NDSS (2008)Google Scholar
  26. 26.
    Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical access pattern privacy and correctness on untrusted storage. In: CCS (2008)Google Scholar
  27. 27.
    Woodruff, D.P., Yekhanin, S.: A geometric approach to information-theoretic private information retrieval. In: IEEE Conference on Computational Complexity (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Spiridon Bakiras
    • 1
  • Konstantinos F. Nikolopoulos
    • 2
  1. 1.John Jay CollegeCity University of New YorkUSA
  2. 2.The Graduate CenterCity University of New YorkUSA

Personalised recommendations