Mobile Assistance for Energy-Efficient Production: Scenario Parameters and System Impact

  • Sebastian Schlund
  • Stefan Gerlach
  • Wolfgang Schweizer
  • Uwe Laufs
  • Patrick Schneider
  • Jan Zibuschka
Chapter
Part of the EcoProduction book series (ECOPROD)

Abstract

Increasing scarcity of resources and high energy costs have led to an increasing relevance of energy-efficiency over the last few years. While a lot of efforts are already being made to optimize energy-efficient production in large companies, there is still a lack of practicable support for small and medium enterprises (SME). While new equipment is mostly designed according to energy-efficiency requirements, feasible action is needed to decrease energy consumption of existing equipment on the shop-floor level. As actions on this small scale rely on dependable information and its use at the right time and place, involvement of ICT devices becomes evident. This chapter describes scenarios as well as a derived system design to integrate mobile and stationary devices for energy-efficient dimensioning and energy optimized operation within the framework of order-related manufacturing. Emphasis is placed on the consolidated consideration of various individual measures. The scenarios provide a basis for further requirements analysis and evaluation of the assistant system.

Keywords

Energy Efficiency Assistance System Order Interval Demand Pattern Business Process Execution Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to Baden-Württemberg Stiftung for financing this research in context of project “AssiEff−Assistance Systems for order specific, energy-efficient production.”

References

  1. Brischke L-A (2010) Rationelle Energienutzung in elektrischen Anwendungen. In: Martin Pehnt (Hg.): Energieeffizienz. Ein Lehr- und Handbuch.1. Aufl. Berlin: Springer, pp 147–195Google Scholar
  2. Ghoshray A, Johnson B (2010) Trends in world energy prices. Energy Econ 32(5):1147–1156CrossRefGoogle Scholar
  3. Ratti RA, Seol Y, Yoon KH (2011) Relative energy price and investment by European firms. Energy Econ (33):721–731Google Scholar
  4. DIN EN 16001:2009–08 (2009) Energiemanagementsysteme−Anforderungen mit Anleitung zur Anwendung, Beuth, BerlinGoogle Scholar
  5. ISO (International Organization for Standardization) (2011) ISO 50001:2011 energy management systems−requirements with guidance for useGoogle Scholar
  6. Bunse K, Vodicka M, Schönsleben P, Brülhart M, Ernst FO (2011) Integrating energy efficiency performance in production management—gap analysis between industrial needs and scientific literature. J Clean Prod 19):667–679CrossRefGoogle Scholar
  7. Schmid C (2004) Energieeffizienz in Unternehmen: Eine wissensbasierte Analyse von Einflußfaktoren und Instrumenten. (Wirtschaft, Energie, Umwelt). Zürich: vdf−Hochschulverlag AG an der ETH Zürich (Wirtschaft−Energie−Umwelt)Google Scholar
  8. European Commission (2003) The European motor challenge programme. European CommissionGoogle Scholar
  9. Radgen P, Blaustein E (eds) (2001) Compressed air systems in the European Union. Energy, emissions, savings potential and policy actions. LOG-X Verlag, StuttgartGoogle Scholar
  10. Siemens (2011) Energy efficiency−the specifics, convincing calculation examples from the widest range of sectors. http://www.industry.siemens.com/topics/global/de/energieeffiziente-produktion/referenzen-rechenbeispiele/rechenbeispiele/Seiten/Default.aspx
  11. Schlund S, Gerlach S, Schweizer W (2011) Mobile assistance for energy-efficient production−a scenario approach. In: Innovation in product and production. July 31–August 4, 2011 in Stuttgart, Germany; conference proceedings; 21th international conference on production research, ICPR 21.International FoundationforProduction Research; Fraunhofer-Institut für Arbeitswirtschaft und Organisation. Stuttgart: Fraunhofer VerlagGoogle Scholar
  12. Ahmed DM, Sundaram D, Piramuthu S (2010) Knowledge-based sce-nario management—Process and support. Decis Support Sys 49:507–520CrossRefGoogle Scholar
  13. Gelman IA (2010) Setting priorities for data accuracy improvements in satisficing decision-making scenarios: A guiding theory. Decis Support Sys 48:507–520CrossRefGoogle Scholar
  14. Grimes P, Kentor J (2003) Exporting the greenhouse: foreign capital penetration and CO2 emissions 1980–1996. In: Goldfrank, WL, Chase-Dunn, C (ed.) J World-Syst Res, ix. Special Issue: Glob Environ (2):261–275Google Scholar
  15. Schleich J (2009) Barriers to energy efficiency: a comparison across the German commercial and services sector. Ecol Econ 68(7):2150–2159Google Scholar
  16. Albino V, Kühtz S (2004):Enterprise input-output model for local sustain-able development—the case of a tiles manufacturer in Italy. Resour Conserv Recycl 41(3):165–176CrossRefGoogle Scholar
  17. Lockett NJ, Brown DH (2005) An SME perspective of vertical application service providers. Intern J Enterp Inf Syst 1(2):37–55Google Scholar
  18. Alcántara V, del Río P, Hernández F (2010) Structural analysis of elec-tricity consumption by productive sectors. The Spanish case. Energy 35(5):2088–2098CrossRefGoogle Scholar
  19. Weerawarana S, Curbera F, Leymann F, Storey T, Ferguson DF (2005) Web services platform architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle RiverGoogle Scholar
  20. W3C (2001) Web services description language (WSDL). http://www.cs.uoi.gr/~/mdw-ws/wsdl.pdf
  21. Business process execution language for web services (2003) http://xml.coverpages.org/BPELv11-May052003Final.pdf
  22. Olsson M, Soder L (2008) Modeling real-time balancing power market prices using combined SARIMA and Markov processes. Power Syst IEEE Trans 23(2):443–450Google Scholar
  23. Bullinger H-J (ed.) (2006) Fokus Innovation: Kräfte bündeln−Prozesse beschleunigen.München: HanserGoogle Scholar
  24. Bügel U, Laufs U (2008) Einsatz innovativer Informations- und Kommunikationstechnologien. In: Fokus Technologie. Chancen erkennen, Leistungen entwickeln.München: Hanser, pp 45–62Google Scholar
  25. McGuinness, Deborah L, van Harmelen, Frank (2004) OWL web ontology language overviewGoogle Scholar
  26. Ankolekar A, Krötzsch M, Tran T, Vrandečić D (2008) The two cul-tures: mashing up Web 2.0 and the semantic web. Web Seman Sci Serv Agents World Wide Web 6(1):70–75CrossRefGoogle Scholar
  27. Celino I, Valle E, Cerizza D (2009) From research to business: the web of linked data. In: Abramowicz W, Flejter D, Aalst W, Mylopoulos J, Rosemann M, Shaw MJ, Szyperski C (eds.) Business information systems workshops, Bd. 37: Springer Berlin Heidelberg (Lecture notes in business information processing), pp 141–152Google Scholar
  28. Hu G, Bidanda B (2009) Modeling sustainable product lifecycle decision support systems. Int J Prod Econ 122(1):366–375CrossRefGoogle Scholar
  29. Bunse K, Vodicka M (2010) Managing energy efficiency in manufacturing processes−implementing energy performance in production information technology systems. In: Berleur J (ed.) What kind of information society? Governance, virtuality, surveillance, sustainability, resilience. 9th IFIP TC 9 international conference HCC9 2010 and 1st IFIP TC 11 international conference CIP 2010 held as part of WCC 2010 Brisbane, Australia September 20–23, 2010 proceedings. Berlin, Heidelberg: Springer (IFIP International Federation for Information Processing), pp 260–268Google Scholar
  30. Roos JG, Hearn AM (2004) Optimising the effective use of energy in the ferroalloy industry through innovative technology. In: Proceedings, tenth international ferro alloys congress, pp 712–725Google Scholar
  31. Guo Q, Zhang M (2009) A novel approach for multi-agent-based Intelli-gent manufacturing system. Inform Sci 179(18):3079–3090CrossRefGoogle Scholar
  32. Vijayaraghavan A, Dornfeld D (2010) Automated energy monitoring of machine tools. CIRP Ann Manuf Technol 59(1):21–24CrossRefGoogle Scholar
  33. Bengtsson N, Michaloski J, Proctor F (2011) Towards data-driven sustainable machining: combining MTConnect production data and discrete event simulation. In: Proceedings of the ASME international manufacturing science and engineering conference−2010. Presented at 2010 ASME international manufacturing science and engineering conference, ASME, Erie, 12–15 Oct 2010, pp 379–387Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian Schlund
    • 1
  • Stefan Gerlach
    • 1
  • Wolfgang Schweizer
    • 1
  • Uwe Laufs
    • 1
  • Patrick Schneider
    • 1
  • Jan Zibuschka
    • 1
  1. 1.Fraunhofer Institute for Industrial Engineering IAOStuttgartGermany

Personalised recommendations