Building Support Tools for Russian-Language Information Extraction

  • Mian Du
  • Peter von Etter
  • Mikhail Kopotev
  • Mikhail Novikov
  • Natalia Tarbeeva
  • Roman Yangarber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6836)

Abstract

There is currently a paucity of publicly available NLP tools to support analysis of Russian-language text. This especially concerns higher-level applications, such as Information Extraction. We present work on tools for information extraction from text in Russian in the domain of on-line news. On the lower level we employ the AOT toolkit for natural language processing, which provides modules for morphological analysis and partial syntactic chunking. Since the outputs of both lower-level modules contain unresolved ambiguity, we synthesize the outputs and pass the result into a pre-existing English-language analysis pipeline. We describe how the information extraction system is adapted for multi-lingual support, including extensions to the ontologies and to the pattern matching mechanism. While this is work in progress, we present an end-to-end pipeline for event extraction from Russian-language news.

Keywords

Noun Phrase Natural Language Processing Inference Rule Information Extraction News Article 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astaf’eva, I., Bonch-Osmolovskaya, A., Garejshina, A., Grishina, J., D’jachkov, V., Ionov, M., Koroleva, A., Kudrinsky, M., Lityagina, A., Luchina, E., Sidorova, E., Toldova, S., Lyashevskaya, O.S.S., Koval’, S.: NLP evaluation: Russian morphological parsers. In: Proceedings of Dialog Conference, Moscow, Russia (2010)Google Scholar
  2. 2.
    Atkinson, M., Belyaeva, J., Zavarella, V., Piskorski, J., Huttunen, S., Vihavainen, A., Yangarber, R.: News mining for border security intelligence. In: Proceedings of IEEE ISI-2010: Intelligence and Security Informatics, Vancouver, BC, Canada (2010)Google Scholar
  3. 3.
    Atkinson, M., Piskorski, J., Tanev, H., van der Goot, E., Yangarber, R., Zavarella, V.: Automated event extraction in the domain of border security. In: Proceedings of MINUCS: Workshop on Mining User-Generated Content for Security, at the UCMedia: 1st International ICST Conference on User-Centric Media, Venice, Italy (2009)Google Scholar
  4. 4.
    Bontcheva, K., Maynard, D., Tablan, V., Cunningham, H.: GATE: A Unicode-based infrastructure supporting multilingual information extraction. In: Proceedings of Workshop on Information Extraction for Slavonic and other Central and Eastern European Languages, Borovets, Bulgaria (2003)Google Scholar
  5. 5.
    von Etter, P., Huttunen, S., Vihavainen, A., Vuorinen, M., Yangarber, R.: Assessment of utility in Web mining for the domain of public health. In: Proceedings of the NAACL HLT 2010 Second Louhi Workshop on Text and Data Mining of Health Documents, pp. 29–37. Association for Computational Linguistics, Los Angeles (June 2010), http://www.aclweb.org/anthology/W10-1105 Google Scholar
  6. 6.
    Järvinen, T., Tapanainen, P.: A dependency parser for English. Tech. Rep. TR-1, Department of General Linguistics, University of Helsinki, Finland (February 1997)Google Scholar
  7. 7.
    Linge, J., Steinberger, R., Weber, T., Yangarber, R., van der Goot, E., Khudhairy, D.A., Stilianakis, N.: Internet surveillance systems for early alerting of health threats. Eurosurveillance Journal 14(13) (2009)Google Scholar
  8. 8.
    Piskorski, J., Atkinson, M., Belyaeva, J., Zavarella, V., Huttunen, S., Yangarber, R.: Real-time text mining in multilingual news for the creation of a pre-frontier intelligence picture. In: Proceedings of ISI-KDD: ACM SIGKDD Workshop on Intelligence and Security Informatics, at KDD-2010: 16th Conference on Knowledge Discovery and Data Mining, Washington, DC (2010)Google Scholar
  9. 9.
    Sokirko, A.: Semantic dictionaries in automatic text analysis, based on DIALING system materials. Ph.D. thesis, Russian State University for the Humanities, Moscow (2001)Google Scholar
  10. 10.
    Sokirko, A.: A short description of DIALING project (2001), http://www.aot.ru/docs/sokirko/sokirko-candid-eng.html
  11. 11.
    Sokirko, A.: Private communication (2011)Google Scholar
  12. 12.
    Steinberger, R., Fuart, F., van der Goot, E., Best, C., von Etter, P., Yangarber, R.: Text mining from the web for medical intelligence. In: Perrotta, D., Piskorski, J., Soulié-Fogelman, F., Steinberger, R. (eds.) Mining Massive Data Sets for Security, OIS Press, Amsterdam (2008)Google Scholar
  13. 13.
    Thelen, M., Riloff, E.: A bootstrapping method for learning semantic lexicons using extraction pattern contexts. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing, EMNLP 2002 (2002)Google Scholar
  14. 14.
    Wilensky, R.: Common LISPcraft. W. W. Norton and Company, USA (1986)MATHGoogle Scholar
  15. 15.
    Yangarber, R.: Counter-training in discovery of semantic patterns. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, Sapporo, Japan (July 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mian Du
    • 1
  • Peter von Etter
    • 1
  • Mikhail Kopotev
    • 1
  • Mikhail Novikov
    • 1
  • Natalia Tarbeeva
    • 1
  • Roman Yangarber
    • 1
  1. 1.Department of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations