Grouping Alternating Schemata in Semantic Valence Dictionary of Polish Verbs

  • Elżbieta Hajnicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6836)


In this paper a method for grouping semantically related schemata is proposed. It is based on the participation of verbs in diathesis alternations. The process of aggregating schemata in four steps is presented.


Semantic Category Related Schema Semantic Role Mathematical Linguistics Selectional Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agirre, E., Martinez, D.: Learning class-to-class selectional preferences. In: Proceedings of the 5th CoNNL-2001 Conference, Toulouse, France, pp. 15–22 (2001)Google Scholar
  2. 2.
    Fillmore, C.J., Johnson, C.R., Petruck, M.R.L.: Background to FrameNet. International Journal of Lexicography 16(3), 235–250 (2003)CrossRefGoogle Scholar
  3. 3.
    Gildea, D.J.: Probabilistic model of verb-argument structure. In: Proceedings of the 6th CoNNL-2002 Conference, Taipei, Taiwan, pp. 308–314 (2002)Google Scholar
  4. 4.
    Hajič, J.: Complex corpus annotation: The Prague dependency treebank. In: Šimková, M. (ed.) Insight into Slovak and Czech Corpus Linguistics, Veda, Bratislava, Slovakia, pp. 54–73 (2005)Google Scholar
  5. 5.
    Hajnicz, E.: Semantic annotation of verb arguments in shallow parsed Polish sentences by means of EM selection algorithm. In: Marciniak, M., Mykowiecka, A. (eds.) Aspects of Natural Language Processing. LNCS, vol. 5070, pp. 211–240. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Hajnicz, E.: Generalizing the EM-based semantic category annotation of NP/PP heads to wordnet synsets. In: Vetulani, Z. (ed.) Proceedings of the 4th L&TC Conference, Poznań Poland, pp. 432–436 (2009)Google Scholar
  7. 7.
    Hajnicz, E.: Problems with pruning in automatic creation of semantic valence dictionary for Polish. In: Matoušek, V., Mautner, P. (eds.) TSD 2009. LNCS, vol. 5729, pp. 131–138. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Hajnicz, E.: Aggregating entries of semantic valence dictionary of Polish verbs. In: Bertinetto, P.M., Korhonen, A., Lenci, A., Melinger, A., Schulte im Walde, S., Villavicencio, A. (eds.) Proceedings of the Interdisciplinary Workshop on the Identification and Representation of Verb Features (Verb 2010), Pisa, Italy, Scuola Normale Superiore and Università di Pisa, pp. 49–54 (2010)Google Scholar
  9. 9.
    Hajnicz, E.: Similarity-based method of detecting diathesis alternations in semantic valence dictionary of Polish verbs. In: International Joint Conference on Security and Intelligent Information Systems, Warsaw, Poland (2011)Google Scholar
  10. 10.
    Hajnicz, E.: Ordering slots of semantically related schemata of Polish verbs. In preparationGoogle Scholar
  11. 11.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. Journal of Intelligent Information Systems 17(2/3), 107–145 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hlaváčková, D., Horák, A.: VerbaLex — new comprehensive lexicon of verb valences for Czech. In: Proceedings of the Third International Seminar on Computer Treatment of Slavic and East European Languages, Bratislava, Slovakia, pp. 107–115 (2006)Google Scholar
  13. 13.
    Joanis, E., Stevenson, S., James, D.: A general feature space for automatic verb classification. Natural Language Engineering 14(3), 337–367 (2008)CrossRefGoogle Scholar
  14. 14.
    Kipper-Schuler, K.: VerbNet: A broad coverage, comprehensive verb lexicon. PhD thesis, Computer and Information Science Department, University of Pennsylvania (2005)Google Scholar
  15. 15.
    Lapata, M.: Acquiring lexical generalizations from corpora: a case study for diathesis alternations. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics (ACL 1999), College Park, MA, pp. 397–404 (1999)Google Scholar
  16. 16.
    Lapata, M., Brew, C.: Verb class disambiguation using informative priors. Computational Linguistics 30(1), 45–73 (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Levin, B.: English verb classes and alternation: a preliminary investigation. University of Chicago Press, Chicago (1993)Google Scholar
  18. 18.
    Li, H., Abe, N.: Generalizing case frames using a thesaurus and the MDL principle. Computational Linguistics 24(2), 217–244 (1998)Google Scholar
  19. 19.
    Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics 19(2), 313–330 (1993)Google Scholar
  20. 20.
    McCarthy, D.: Lexical Acquisition at the Syntax-Semantics Interface: Diathesis Alternations, Subcategorization Frames and Selectional Preferences. PhD thesis, University of Sussex (2001)Google Scholar
  21. 21.
    Merlo, P., Stevenson, S.: Automatic verb classification based on statistical distributions of argument structure. Computational Linguistics 27(3), 373–408 (2001)CrossRefGoogle Scholar
  22. 22.
    Pala, K., Smrž, P.: Building the Czech WordNet. Romanian Journal of Information Science and Technology 7(2–3), 79–88 (2004)Google Scholar
  23. 23.
    Palmer, M., Kingsbury, P., Gildea, D.J.: The proposition bank: an annotated corpus of semantic roles. Computational Linguistics 31(1), 71–106 (2005)CrossRefGoogle Scholar
  24. 24.
    Resnik, P.: Selectional constrains: An-information-theoretic model and its computational realization. Cognition 61, 127–159 (1996)CrossRefGoogle Scholar
  25. 25.
    Schulte im Walde, S.: Clustering verbs semantically according to their alternation behaviour. In: Proceedings of the COLING-2000 Conference, Saarbrücken, Germany, pp. 747–753 (2000)Google Scholar
  26. 26.
    Szupryczyńska, M.: Syntaktyczna klasyfikacja czasowników przybiernikowych. Państwowe Wydawnictwo Naukowe, Poznań, Poland (1973)Google Scholar
  27. 27.
    Świdziński, M.: Syntactic Dictionary of Polish Verbs. Uniwersytet Warszawski / Universiteit van Amsterdam (1994)Google Scholar
  28. 28.
    Žabokrtský, Z., Lopatková, M.: Valency information in VALLEX 2.0: Logical structure of the lexicon. The Prague Bulletin of Mathematical Linguistics 87, 41–60 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Elżbieta Hajnicz
    • 1
  1. 1.Institute of Computer SciencePolish Academy of SciencesPoland

Personalised recommendations