Advertisement

Event Detection over Live and Archived Streams

  • Shanglian Peng
  • Zhanhuai Li
  • Qiang Li
  • Qun Chen
  • Wei Pan
  • Hailong Liu
  • Yanming Nie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6897)

Abstract

It is becoming increasingly crucial to integrate pattern matching functionality over live and archived event streams with hybrid event queries for various complex event processing(CEP) applications. As existing Stream Processing Engine(SPE) and DBMS alone can not accommodate hybrid event queries, we investigate system integration issues and scheduling algorithm optimizations of hybrid event processing based on discrete pattern in a single framework. First, hierarchical event stream storage is introduced to synchronize data access over live/archived event streams. Second, live and historical partial pattern matching caching mechanisms are proposed to provide effective partial pattern match search and update. Third, to reduce database access overhead, sub-window based event detect scheduling algorithms are proposed. Empirical performance study in a prototype hybrid event processing engine demonstrates effectiveness of our approaches.

Keywords

complex event processing NFA data stream RFID 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The design of the borealis stream processing engine. In: CIDR, pp. 277–289 (2005)Google Scholar
  2. 2.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: Telegraphcq: Continuous dataflow processing for an uncertain world. In: CIDR (2003)Google Scholar
  3. 3.
    Franklin, M.J., Jeffery, S.R., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E., Cooper, O., Edakkunni, A., Hong, W.: Design considerations for high fan-in systems: The hifi approach. In: CIDR, pp. 290–304 (2005)Google Scholar
  4. 4.
    Dindar, N., Güç, B., Lau, P., Ozal, A., Soner, M., Tatbul, N.: Dejavu: declarative pattern matching over live and archived streams of events. In: SIGMOD Conference, pp. 1023–1026 (2009)Google Scholar
  5. 5.
    Chandrasekaran, S.: Query processing over live and archived data streams. PhD thesis, Berkeley, CA, USA (2005)Google Scholar
  6. 6.
    Balazinska, M., Kwon, Y., Kuchta, N., Lee, D.: Moirae: History-enhanced monitoring. In: CIDR, pp. 375–386 (2007)Google Scholar
  7. 7.
    Soner, M.: Modeling and efficiently processing hybrid pattern matching queries over live and archived streams. Master’s thesis, ETH Zurich, Switzerland (2010)Google Scholar
  8. 8.
    Zimmer, D., Unland, R.: On the semantics of complex events in active database management systems. In: ICDE, pp. 392–399 (1999)Google Scholar
  9. 9.
    Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In: SIGMOD Conference, pp. 407–418 (2006)Google Scholar
  10. 10.
    Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M.: Cayuga: A general purpose event monitoring system. In: CIDR, pp. 412–422 (2007)Google Scholar
  11. 11.
    Mei, Y., Madden, S.: Zstream: a cost-based query processor for adaptively detecting composite events. In: SIGMOD Conference, pp. 193–206 (2009)Google Scholar
  12. 12.
    Tufte, K., Li, J., Maier, D., Papadimos, V., Bertini, R.L., Rucker, J.: Travel time estimation using niagarast and latte. In: SIGMOD Conference, pp. 1091–1093 (2007)Google Scholar
  13. 13.
    Zemke, F., Witkowski, A., Cherniak, M., Colby, L.: Pattern matching in sequences of rows. Technical report, ANSI Standard ProposalGoogle Scholar
  14. 14.
    Golab, L., Johnson, T., Seidel, J.S., Shkapenyuk, V.: Stream warehousing with datadepot. In: SIGMOD Conference, pp. 847–854 (2009)Google Scholar
  15. 15.
    Reiss, F., Stockinger, K., Wu, K., Shoshani, A., Hellerstein, J.M.: Enabling real-time querying of live and historical stream data. In: SSDBM, p. 28 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shanglian Peng
    • 1
  • Zhanhuai Li
    • 1
  • Qiang Li
    • 2
  • Qun Chen
    • 1
  • Wei Pan
    • 1
  • Hailong Liu
    • 1
  • Yanming Nie
    • 1
  1. 1.School of Computer Science and TechnologyNorthwestern Polytechnical UniversityChina
  2. 2.College of Software and MicroelectronicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations