Incorporating User Feedback into Name Disambiguation of Scientific Cooperation Network

  • Yuhua Li
  • Aiming Wen
  • Quan Lin
  • Ruixuan Li
  • Zhengding Lu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6897)


In scientific cooperation network, ambiguous author names may occur due to the existence of multiple authors with the same name. Users of these networks usually want to know the exact author of a paper, whereas we do not have any unique identifier to distinguish them. In this paper, we focus ourselves on such problem, we propose a new method that incorporates user feedback into the model for name disambiguation of scientific cooperation network. Perceptron is used as the classifier. Two features and a constraint drawn from user feedback are incorporated into the perceptron to enhance the performance of name disambiguation. Specifically, we construct user feedback as a training stream, and refine the perceptron continuously. Experimental results show that the proposed algorithm can learn continuously and significantly outperforms the previous methods without introducing user interactions.


Name Disambiguation User Feedback Scientific Cooperation Network Perceptron Constraint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nguyen, H.T., Cao, T.H.: Exploring wikipedia and text features for named entity disambiguation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS (2). LNCS, vol. 5991, pp. 11–20. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    D’Angelo, C.A., Giuffrida, C., Abramo, G.: A heuristic approach to author name disambiguation in bibliometrics databases for large-scale research assessments. JASIST 62(2), 257–269 (2011)CrossRefGoogle Scholar
  3. 3.
    Ferreira, A.A., Veloso, A., Gonçalves, M.A., Laender, A.H.F.: Effective self-training author name disambiguation in scholarly digital libraries. In: JCDL, pp. 39–48 (2010)Google Scholar
  4. 4.
    Treeratpituk, P., Giles, C.L.: Disambiguating authors in academic publications using random forests. In: JCDL, pp. 39–48 (2009)Google Scholar
  5. 5.
    Han, H., Giles, C.L., Zha, H., Li, C., Tsioutsiouliklis, K.: Two supervised learning approaches for name disambiguation in author citations. In: JCDL, pp. 296–305 (2004)Google Scholar
  6. 6.
    Cota, R.G., Ferreira, A.A., Nascimento, C., Gonçalves, M.A., Laender, A.H.F.: An unsupervised heuristic-based hierarchical method for name disambiguation in bibliographic citations. JASIST 61(9), 1853–1870 (2010)CrossRefGoogle Scholar
  7. 7.
    Han, H., Zha, H., Giles, C.L.: Name disambiguation in author citations using a k-way spectral clustering method. In: JCDL, pp. 334–343 (2005)Google Scholar
  8. 8.
    Yang, K.H., Peng, H.T., Jiang, J.Y., Lee, H.M., Ho, J.M.: Author name disambiguation for citations using topic and web correlation. In: Christensen-Dalsgaard, B., Castelli, D., Ammitzbøll Jurik, B., Lippincott, J. (eds.) ECDL 2008. LNCS, vol. 5173, pp. 185–196. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Kang, I.S., Na, S.H., Lee, S., Jung, H., Kim, P., Sung, W.K., Lee, J.H.: On co-authorship for author disambiguation. Inf. Process. Manage. 45(1), 84–97 (2009)CrossRefGoogle Scholar
  10. 10.
    Jin, H., Huang, L., Yuan, P.: Name disambiguation using semantic association clustering. In: ICEBE, pp. 42–48 (2009)Google Scholar
  11. 11.
    Zhang, D., Tang, J., Li, J.Z., Wang, K.: A constraint-based probabilistic framework for name disambiguation. In: CIKM, pp. 1019–1022 (2007)Google Scholar
  12. 12.
    Wang, F., Tang, J., Li, J., Wang, K.: A constraint-based topic modeling approach for name disambiguation. Frontiers of Computer Science in China 4(1), 100–111 (2010)CrossRefGoogle Scholar
  13. 13.
    Wang, C., Han, J., Jia, Y., Tang, J., Zhang, D., Yu, Y., Guo, J.: Mining advisor-advisee relationships from research publication networks. In: KDD, pp. 203–212 (2010)Google Scholar
  14. 14.
    Liu, Y., Zhang, M., Ru, L., Ma, S.: Automatic query type identification based on click through information. In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.) AIRS 2006. LNCS, vol. 4182, pp. 593–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Joachims, T., Granka, L.A., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: SIGIR, pp. 154–161 (2005)Google Scholar
  16. 16.
    Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., Li, H.: Context-aware query suggestion by mining click-through and session data. In: KDD, pp. 875–883 (2008)Google Scholar
  17. 17.
    Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-through rate for new ads. In: WWW, pp. 521–530 (2007)Google Scholar
  18. 18.
    Chai, X., Vuong, B.Q., Doan, A., Naughton, J.F.: Efficiently incorporating user feedback into information extraction and integration programs. In: SIGMOD Conference, pp. 87–100 (2009)Google Scholar
  19. 19.
    Lin, Q., Wang, B., Du, Y., Wang, X., Li, Y.: Disambiguating authors by pairwise classification. Tsinghua Science and Technology 15(6), 668–677 (2010)CrossRefGoogle Scholar
  20. 20.
    Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. PVLDB 2(1), 718–729 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yuhua Li
    • 1
  • Aiming Wen
    • 1
  • Quan Lin
    • 1
  • Ruixuan Li
    • 1
  • Zhengding Lu
    • 1
  1. 1.Intelligent and Distributed Computing Lab, School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanP.R. China

Personalised recommendations