Leveraging Communication Information among Readers for RFID Data Cleaning

  • Tao Jiang
  • Yingyuan Xiao
  • Xiaoye Wang
  • Yukun Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6897)


Radio Frequency Identification (RFID) technologies are used in many applications for data collection. However, raw RFID readings are usually of low quality due to frequent occurrences of false negative, false positive and duplicate readings. A number of RFID data cleaning techniques are proposed to solve the problem. In this paper we explore to use communication information for RFID data cleaning and make RFID readers produce less dirty data at the early stage. First, we devise a reader communication protocol for efficiently utilizing the communication information among readers. Then, the cell event sequence tree with parameters is proposed. Finally, we present three novel RFID data cleaning methods, respectively for duplicate readings, false positive readings and data interpolating. To the best of our knowledge, this is the first work utilizing the communication information among readers in RFID data cleaning. We conduct extensive experiments, and the experimental results demonstrate the feasibility and effectiveness of our methods.


RFID data cleaning communication information cell event sequence tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jeffery, S.R., Garofalakis, M., Franklin, M.J.: Adaptive Cleaning for RFID Data Streams. In: Proceedings of VLDB, pp. 163–174. ACM Press, Seoul (2006)Google Scholar
  2. 2.
    Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W., Widom, J.: A Pipelined Framework for Online Cleaning of Sensor Data Streams. In: Proceedings of ICDE, pp. 140–142. IEEE Press, Atlanta (2006)Google Scholar
  3. 3.
    Rao, J., Doraiswamy, S., Thakkar, H., Colby, L.S.: A Deferred Cleansing Method for RFID Data Analytics. In: Proceedings of VLDB, pp. 175–186. ACM Press, Seoul (2006)Google Scholar
  4. 4.
    Bai, Y., Wang, F., Liu, P.: Efficiently Filtering RFID Data Streams. In: VLDB Workshop on CleanDB. ACM Press, Seoul (2006)Google Scholar
  5. 5.
    Khoussainova, N., et al.: Towards Correcting Input Data Errors Probabilistically Using Integrity Constraints. In: Proceedings of MobiDE, pp. 43–50. ACM Press, Chicago (2006)CrossRefGoogle Scholar
  6. 6.
    Xie, J., Yang, J., Chen, Y., Wang, H., Yu, P.S.: A Sampling-Based Approach to Information Recovery. In: Proceedings of ICDE, pp. 476–485. IEEE Press, Cancun (2008)Google Scholar
  7. 7.
    Chen, H., Ku, W.S., et al.: Leveraging Spatio-Temporal Redundancy for RFID Data Cleansing. In: Proceedings of SIGMOD, pp. 51–62. ACM Press, New York (2010)Google Scholar
  8. 8.
    Gu, Y., et al.: Efficient RFID Data Imputation by Analyzing the Correlations of Monitored Objects. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 186–200. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Jeffery, S.R., Alonso, G., et al.: Declarative Support for Sensor Data Cleaning. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 83–100. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Kanagal, B., et al.: Online Filtering, Smoothing and Probabilistic Modeling of Streaming Data. In: Proceedings of ICDE, pp. 1160–1169. IEEE Press, Cancun (2008)Google Scholar
  11. 11.
    Gonzalez, H., Han, J., Shen, X.: Cost-Conscious Cleaning of Massive RFID Data Sets. In: Proceedings of ICDE, pp. 1268–1272. IEEE Press, Istanbul (2007)Google Scholar
  12. 12.
    Franklin, M.J., Hong, W., et al.: Design Considerations for High Fan-in Systems: The HiFi Approach. In: Proceedings of CIDR, pp. 290–304. ACM press, California (2005)Google Scholar
  13. 13.
    Cocci, R., Tran, T., et al.: Efficient Data Interpretation and Compression over RFID Streams. In: Proceedings of ICDE, pp. 1445–1447. IEEE Press, Cancun (2008)Google Scholar
  14. 14.
    Agusti, S., Josep, D.F., Antoni, M.B., Vanesa, D.: A Distributed Architecture for Scalable Private RFID Tag Identification. Computer Networks 51, 2268–2279 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Chaves, L.W.F., Buchmann, E., Böhm, K.: Finding Misplaced Items in Retail by Clustering RFID Data. In: Proceedings of EDBT, pp. 501–512. ACM Press, New York (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tao Jiang
    • 1
  • Yingyuan Xiao
    • 1
  • Xiaoye Wang
    • 1
  • Yukun Li
    • 1
  1. 1.Tianjin Key Laboratory of Intelligence Computing and Novel Software TechnologyTianjin University of TechnologyTianjinChina

Personalised recommendations