Molecular Signals and Receptors: Communication Between Nitrogen-Fixing Bacteria and Their Plant Hosts

  • Ann M. HirschEmail author
  • Nancy A. Fujishige
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 14)


Our understanding of the extent of communication taking place between the plant and its underground microbiome (rhizosphere microbes) as well as with other soil organisms has grown exponentially in the last decade. Much of this information has been obtained from studies of nitrogen-fixing organisms, particularly members of the family Rhizobiaceae(Alphaproteobacteria) that establish nodules on legume roots in which atmospheric nitrogen is converted to plant-utilizable forms. Signals exchanged among organisms in the rhizosphere via quorum sensing (QS) and the responses to these signals have been identified, but it is unclear how they influence the downstream stages of nodulation and nitrogen fixation. An exchange of signal molecules ensures that a high level of specificity takes place to optimize the nitrogen-fixing interaction between host legume and symbiont. Chitin-related molecules appear to be the microbial currency for communication between the symbiotic partners in both mutualistic and pathogenic interactions. Exceptions to the paradigms based on the legume-Rhizobiuminteraction, including the discovery of Betaproteobacteria (now called beta-rhizobia) that nodulate and fix nitrogen with legumes and the lack of nodulation (nod) genes in certain alpha-rhizobia, particularly those that nodulate Aeschynomeneand Arachis, bring into question the universality of some of the previous models. Moreover, new frontiers have opened that examine the coordination of information exchange that is needed for the induction and maintenance of nitrogen fixation and for bacteroid differentiation. Nevertheless, nitrogen-fixing organisms are just one small part of a highly interactive rhizosphere community. The challenge of the next decade will be to understand in greater depth the community dynamics that occur in soil, one of our planet’s most precious yet limited resources, in the hopes of maintaining the key signal webs that are critical not only for the promotion of agriculture but also for the preservation of the environment overall.


Nitrogen Fixation Quorum Sense Quorum Sense System Legume Host Indeterminate Nodule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research in the Hirsch laboratory is funded by grants from the National Science Foundation and from the support of the Shanbrom Family Foundation. We are grateful to Philip Poole and Roger Innes for answering our e-mails about nitrogen fixation. We thank Stefan J. Kirchanski thanked for his helpful comments on a draft of the manuscript. We also thank Michelle Lum for Fig. 1c and Benny Gee for Fig. 2.

We dedicate this chapter to the late W. Dietz Bauer, one of the pioneers in the field of plant-microbe communication.


  1. Ahlgren NA, Harwood CS, Schaefer AL, Giraud E, Greenberg EP (2011) Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proc Natl Acad Sci USA 17:7183–7188CrossRefGoogle Scholar
  2. Ardourel M, Demont N, Debellé F, Maillet F, de Billy F, Promé J-C, Dénarié J, Truchet G (1994) Rhizobium melilotilipochitooligosaccharide nodulation factors: Different structural requirements for bacterial entry to target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6:1357–1374PubMedGoogle Scholar
  3. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650PubMedCrossRefGoogle Scholar
  4. Bahlawane C, McIntosh M, Krol E, Becker A (2008) Sinorhizobium melilotiregulator MucR couples exopolysaccharide synthesis and motility. Mol Plant–Microbe Interact 21:1498–1509PubMedCrossRefGoogle Scholar
  5. Banwart S (2011) Save our soils. Nature 474:151–152PubMedCrossRefGoogle Scholar
  6. Bonaldi K, Gourion B, Fardoux J, Hannibal L, Cartieaux F, Boursot M, Vallenet D, Chaintreuil C, Prin Y, Nouwem N, Giraud E (2010) Large-scale transposon mutagenesis of photosynthetic Bradyrhizobiumsp. strain ORS278 reveals new genetic loci putatively important for nod-independent symbiosis with Aeschynomene indica. Mol Plant–Microbe Interact 23:760–770PubMedCrossRefGoogle Scholar
  7. Bonfante P, Requena N (2011) Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 14:1–7CrossRefGoogle Scholar
  8. Bontemps C, Elliott GN, Simon MF, dos Reis Junior FB, Gross E, Lawton RC, Neto NE, Loureiro MF, de Faria SM, Sprent JI, James EK, Young JPW (2010) Burkholderiaspecies are ancient symbionts of legumes. Mol Ecol 19:44–52PubMedCrossRefGoogle Scholar
  9. Boone CM, Olsthoorn MMM, Dakora FD, Spaink HP, Thomas-Oates JE (1999) Structural characterization of lipo-oligosaccharides isolated from Bradyrhizobium aspalati, microsymbionts of commercially important South African legumes. Carbohydr Res 317:155–163PubMedCrossRefGoogle Scholar
  10. Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230PubMedCrossRefGoogle Scholar
  11. Brelles-Mariño G, Bedmar EJ (2001) Detection, purification and characterisation of quorum-sensing signal molecules in plant-associated bacteria. J Biotechnol 91:197–209PubMedCrossRefGoogle Scholar
  12. Bucher M, Wegmüller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 12:500–507PubMedCrossRefGoogle Scholar
  13. Cao H, Yang M, Zheng H, Zhang J, Zhong Z, Zhu J (2009) Complex quorum-sensing regulatory systems regulate bacterial growth and symbiotic nodulation in Mesorhizobium tianshanense. Arch Microbiol 191:283–289PubMedCrossRefGoogle Scholar
  14. Chen W-M, James EK, Prescott AR, Kierans M, Sprent JI (2003a) Nodulation of Mimosaspp. by the β-proteobacterium Ralstonia taiwanensis. Mol Plant–Microbe Interact 16:1051–1061PubMedCrossRefGoogle Scholar
  15. Chen W-M, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003b) Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272PubMedCrossRefGoogle Scholar
  16. Chen W-M, James EK, Coenye T, Chou J-H, Barrios E, de Faria SM, Elliott GN, Sheu S-Y, Sprent JI, Vandamme P (2006) Burkholderia mimosarumsp. nov., isolated from root nodules of Mimosaspp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851PubMedCrossRefGoogle Scholar
  17. Chen W-M, de Faria SM, James EK, Elliott GN, Lin K-Y, Chou J-H, Sheu S-Y, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosasp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronataand Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059PubMedCrossRefGoogle Scholar
  18. Chen W-M, de Faria SM, Chou J-H, James EK, Elliott GN, Sprent JI, Bontemps C, Young JPW, Vandamme P (2008) Burkholderia sabiaesp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179PubMedCrossRefGoogle Scholar
  19. Cubo MT, Economou A, Murphy G, Johnston AW, Downie JA (1992) Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCRthat can influence nodulation by Rhizobium leguminosarumbiovar viciae. J Bacteriol 174:4026–4035PubMedGoogle Scholar
  20. Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cinquorum sensing locus of Rhizobium etliCNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468PubMedCrossRefGoogle Scholar
  21. Danino VE, Wilkinson A, Edwards A, Downie JA (2003) Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarumbv. viciaeis regulated by a quorum-sensing relay. Mol Microbiol 50:511–525PubMedCrossRefGoogle Scholar
  22. Dart P (1977) Infection and development of leguminous nodules. In: Hardy RWF (ed) A treatise on biological nitrogen fixation. Wiley, New York, pp 367–472Google Scholar
  23. Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobia protein secretion systems. Nat Rev Microbiol 7:3312–3320Google Scholar
  24. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631PubMedCrossRefGoogle Scholar
  25. Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170PubMedCrossRefGoogle Scholar
  26. Downie JA, González JE (2008) Cell-to-cell communication in rhizobia: Quorum sensing and plant signaling. In: Winans SC, Bassler BL (eds) Chemical communication among bacteria. ASM Press, Washington, DC, pp 213–232Google Scholar
  27. Egland KA, Greenberg EP (1999) Quorum sensing in Vibrio fischeri: elements of the luxIpromoter. Mol Microbiol 31:1197–1204PubMedCrossRefGoogle Scholar
  28. Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonasspp. than among soilborne Pseudomonasspp. Appl Environ Microbiol 67:1198–1209PubMedCrossRefGoogle Scholar
  29. Ercolin F, Reinhardt D (2011) Successful joint ventures of plants: Arbuscular mycorrhiza and beyond. Trends Plant Sci 16:356PubMedCrossRefGoogle Scholar
  30. Foster RC, Rovira AD, Cock TW (1983) Ultrastructure of the root–soil interface. The American Phytopathological Society, St. Paul, pp 5–11Google Scholar
  31. Fujishige NA, Lum MR, De Hoff PL, Whitelegge JP, Faull KF, Hirsch AM (2008) Rhizobiumcommon nodgenes are required for biofilm formation. Mol Microbiol 67:504–515PubMedCrossRefGoogle Scholar
  32. Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatulathat affect bacterial quorum sensing. Mol Plant–Microbe Interact 16:827–834PubMedCrossRefGoogle Scholar
  33. Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Rolfe BG, Bauer WD (2005) sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:7931–7944PubMedCrossRefGoogle Scholar
  34. Gao Y, Zhong Z, Sun K, Wang H, Zhu J (2006) The quorum-sensing system in a plant-bacterium Mesorhizobium huakuiiaffects growth rate and symbiotic nodulation. Plant Soil 286:53–60CrossRefGoogle Scholar
  35. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E et al (2007) Legume symbioses: absence of nodgenes in photosynthetic bradyrhizobia. Science 316:1307–1312PubMedCrossRefGoogle Scholar
  36. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone mediated prokaryotic signaling. J Bacteriol 178:6618–6622PubMedGoogle Scholar
  37. Glenn SA, Gurich N, Feeney MA, González JE (2007) The ExpR/Sin quorum sensing system controls succinoglycan production in Sinorhizobium meliloti. J Bacteriol 189:7077–7088PubMedCrossRefGoogle Scholar
  38. González-Sama A, Lucas MM, de Felipe MR, Pueyo JJ (2004) An unusual infection mechanism and nodule morphogenesis in white lupin (Lupinus albus). New Phytologist 163:371–380CrossRefGoogle Scholar
  39. Gurich N, González JE (2009) Role of quorum sensing in the Sinorhizobium meliloti-alfalfa symbiosis. J Bacteriol 191:4372–4382PubMedCrossRefGoogle Scholar
  40. Hamel L-P, Beaudoin N (2010) Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant–microbe interactions. Planta 232:787–806PubMedCrossRefGoogle Scholar
  41. He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C (2003) Quorum sensing in Rhizobiumsp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 185:809–822PubMedCrossRefGoogle Scholar
  42. Hirsch AM (1992) Tansley Review No. 40. Developmental biology of legume nodulation. New Phytologist 122:211–237CrossRefGoogle Scholar
  43. Hirsch AM (2004) Plant-microbe symbioses: a continuum from commensalism to parasitism. Symbiosis 37:345–363Google Scholar
  44. Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium-legume symbiosis. Fungal Genet Biol 23:205–212PubMedCrossRefGoogle Scholar
  45. Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868CrossRefGoogle Scholar
  46. Hirsch AM, Lum MR, Fujishige NA (2009) Microbial encounters of a symbiotic kind—attaching to roots and other surfaces. In: Emons AMC, Ketelaar T (eds) Root hairs. Plant cell monographs, vol 12. Springer, Berlin/Heidelberg, pp 295–314Google Scholar
  47. Hoang HH, Becker A, González JE (2004) The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium melilotigene expression. J Bacteriol 186:5460–5472PubMedCrossRefGoogle Scholar
  48. Hoang HH, Gurich N, González JE (2008) Regulation of motility by the ExpR/Sin quorum sensing system in Sinorhizobium meliloti.J Bacteriol 190:861–871Google Scholar
  49. Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P et al (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signal cascade. Plant Physiol 156:700–711PubMedCrossRefGoogle Scholar
  50. Hwang I, Cook DM, Farrand SK (1995) A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. J Bacteriol 177:449–458PubMedGoogle Scholar
  51. Iizasa E, Mitsutomi M, Nagano Y (2010) Direct binding of a plant LysM receptor kinase, LysM RlK1/CERK1, to chitin in vitro. J Biol Chem 285:2996–3004PubMedCrossRefGoogle Scholar
  52. Innes Roger William (1988). A molecular genetic analysis of host-range control in Rhizobium trifolii. Ph.D. dissertation, University of Colorado at Boulder, United States, Colorado. Retrieved June 3, 2011, from Dissertations & Theses: A&I. (Publication No. AAT 8819666)Google Scholar
  53. Jitacksorn S, Sadowsky MJ (2008) Nodulation gene regulation and quorum sensing control density dependent suppression and restriction of nodulation in the Bradyrhizobium japonicum-soybean symbiosis. Appl Environ Microbiol 74:3749–3756PubMedCrossRefGoogle Scholar
  54. Jones JD, Dangl J (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  55. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicagomodel. Nat Rev Microbiol 5:619–633PubMedCrossRefGoogle Scholar
  56. Lanou A, Burlat V, Schurr U, Röse USR (2010) Induced root-secreted phenolic compounds as a belowground plant defense. Plant Signal Behav 5:1037–1038CrossRefGoogle Scholar
  57. LaRue TA, Weeden NF (1994). The symbiosis genes of the host. In: Kiss GB, Endre G (eds) Proceedings of the 1st European nitrogen fixation conference, Officia Press, Szeged, 147–151Google Scholar
  58. Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2:581–592PubMedCrossRefGoogle Scholar
  59. Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA (2000) The regulatory locus cinRIin Rhizobium leguminosarumcontrols a network of quorum sensing loci. Mol Microbiol 37:81–97PubMedCrossRefGoogle Scholar
  60. Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 69:10–17PubMedCrossRefGoogle Scholar
  61. Loh J, Carlson RW, York WS, Stacey G (2002) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci USA 99:14446–14451PubMedCrossRefGoogle Scholar
  62. Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckman AB, Bek AS, Ronson CW, James EK, Stougaard J (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 1:10PubMedCrossRefGoogle Scholar
  63. Maillet F, Poinsot V, André L, Puech-Pagè V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhizae. Nature 469:58–64PubMedCrossRefGoogle Scholar
  64. Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P, Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchrainhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291PubMedCrossRefGoogle Scholar
  65. Manefield M, Rasmussen TB, Hentzer M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:119–1127Google Scholar
  66. Marketon MM, González JE (2002) Identification of two quorum-sensing systems in Sinorhizobium meliloti. J Bacteriol 185:3466–3475CrossRefGoogle Scholar
  67. Marketon MM, Gronquist MR, Eberhard A, González JE (2002) Characterization of the Sinorhizobium meliloti sinR/sinIlocus and the production of novel N-acyl homoserine lactones. J Bacteriol 184:5686–5695PubMedCrossRefGoogle Scholar
  68. Marketon MM, Glenn SA, Eberhard A, González JE (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185:325–331PubMedCrossRefGoogle Scholar
  69. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe RB, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449PubMedCrossRefGoogle Scholar
  70. McIntosh M, Krol E, Becker A (2008) Competitive and cooperative effects in quorum sensing regulated galactoglucan biosynthesis in Sinorhizobium meliloti. J Bacteriol 190:5308–5317PubMedCrossRefGoogle Scholar
  71. Merker R, Smit J (1988) Characterization of the adhesive holdfast of marine and freshwater caulobacters. Appl Environ Microbiol 54:2078–2085PubMedGoogle Scholar
  72. Moulin L, Mundive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by the beta-subclass of Proteobacteria. Nature 411:948–950PubMedCrossRefGoogle Scholar
  73. Moulin L, Chen WM, Béna G, Dreyfus B, Boivin-Masson C (2002). Rhizobia: the family is expanding. In: Finan T, O’Brian M, Layzell D, Vessey K, Newton, W (eds) Nitrogen fixation: global perspectives, CAB International, Wallingford, UK, New York, NY, pp 61–65Google Scholar
  74. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N et al (2007) Evaluation of Frankiastrains isolated from provenances of two Alnusspecies. Genome Res 17:7–15PubMedCrossRefGoogle Scholar
  75. Ong CJ, Wong MLY, Smit J (1990) Attachment of the adhesive holdfast organelle to the cellular stalk of Caulobacter crescentus. J Bacteriol 172:1448–1456PubMedGoogle Scholar
  76. Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JS, Kudrna D, Wing R, Untergasser A, Bisseling T, Geurts R (2011) LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331:909–912PubMedCrossRefGoogle Scholar
  77. Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríquez L, López-Bucio L (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712PubMedCrossRefGoogle Scholar
  78. Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC (2002) A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 184:5067–5076PubMedCrossRefGoogle Scholar
  79. Pereira CS, McAuley JR, Taga ME, Xavier KB, Miller ST (2008) Sinorhizobium meliloti, a bacterium lacking autoinducer-2 (AI-2) synthase responds to AI-2 supplied by other bacteria. Mol Microbiol 70:1223–1235PubMedCrossRefGoogle Scholar
  80. Piper KR, von Bodman SB, Farrand SK (2004) Conjugation factor of Agrobacterium tumefaciensregulates Ti plasmid transfer by autoinduction. Nature 362:448–450CrossRefGoogle Scholar
  81. Pongsilp N, Triplett EW, Sadowsky MJ (2005) Detection of homoserine lactone-like quorum sensing molecules in Bradyrhizobiumstrains. Curr Microbiol 51:250–254PubMedCrossRefGoogle Scholar
  82. Prell J, Poole P (2006) Metabolic changes of rhizobia in legume nodules. Trends Microbiol 14:161–168PubMedCrossRefGoogle Scholar
  83. Prell J, Bourdès A, Kumar S, Lodwig E, Hosie A, Kinghorn S, White J, Poole P (2010) Role of symbiotic auxotrophy in the Rhizobium-legume symbiosis. PLoS One 5:e13933PubMedCrossRefGoogle Scholar
  84. Ramsay JP, Sullivan JT, Stuart GS, Lamont IL, Ronson CW (2006) Excision and transfer of the Mesorhizobium lotiR7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Mol Microbiol 62:723–734PubMedCrossRefGoogle Scholar
  85. Ramsay JP, Sullivan JT, Jambari N, Ortori CA, Heeb S, Williams P, Barrett DA, Lamont IL, Ronson CW (2009) A LuxRI-family regulatory system controls excisions and transfer of the Mesorhizobium lotiR7A symbiosis island by activating expression of two conserved hypothetical genes. Mol Microbiol 73:1141–1155PubMedCrossRefGoogle Scholar
  86. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million year old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843PubMedCrossRefGoogle Scholar
  87. Rodelas B, Lithgow JK, Wisniewski-Dye F, Hardman A, Wilkinson A, Economou A, Williams P, Downie JA (1999) Analysis of quorum-sensing-dependent control of rhizosphere expressed (rhi) genes in Rhizobium leguminosarumbv. viciae. J Bacteriol 181:3816–3823PubMedGoogle Scholar
  88. Rosemeyer V, Michiels J, Verreth C, Vanderleyden J (1998) luxI- and luxR-homologous genes of Rhizobium etliCNPAF512 contribute to the synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J Bacteriol 180:815–821PubMedGoogle Scholar
  89. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:974–977PubMedCrossRefGoogle Scholar
  90. Sanchez-Contreras M, Bauer WD, Gao M, Robinson JB, Downie JA (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Phil Trans R Soc B 362:1149–1163PubMedCrossRefGoogle Scholar
  91. Scheu S (2001) Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl Ecol 2:3–13CrossRefGoogle Scholar
  92. Sinharoy S, DasGupta M (2009) RNA interference highlights the role of CCaMK in dissemination of endosymbionts in the Aeschynomeneae legume Arachis. Mol Plant–Microbe Interact 22:1466–1475PubMedCrossRefGoogle Scholar
  93. Sourjik V, Muschler P, Scharf B, Schmitt R (2000) VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J Bacteriol 182:782–788PubMedCrossRefGoogle Scholar
  94. Sprent JI (2007) Tansley review. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytologist 174:11–25PubMedCrossRefGoogle Scholar
  95. Suarez-Moreno ZR, Caballero-Mellado J, Venturi V (2008) The new group of non-pathogenic plant-associated Burkholderiaspp. shares a conserved quorum sensing system which is tightly regulated by the RsaL repressor. Microbiology 154:2048–2059PubMedCrossRefGoogle Scholar
  96. Suarez-Moreno ZR, Devescovi G, Myers M, Hallack L, Mendonca-Previato L, Caballero-Mellado J, Venturi V (2010) Commonalities and differences in regulation of N-acyl homoserine lactone quorum sensing in the beneficial plant associated Burkholderiaspecies cluster. Appl Environ Microbiol 76:4302–4317PubMedCrossRefGoogle Scholar
  97. Taylor TN, Remy W, Hass H (1992) Fungi from the lower Devonian Rhynie chert: Chytridiomycetes. Am J Bot 79:1233–1241CrossRefGoogle Scholar
  98. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant–Microbe Interact 13:637–648PubMedCrossRefGoogle Scholar
  99. Teplitski M, Eberhard A, Gronquist MR, Gao M, Robinson JB, Bauer WD (2003) Chemical identification of N-acyl homoserine lactone quorum sensing signals produced by Sinorhizobium melilotistrains in defined medium. Arch Microbiol 180:494–497PubMedCrossRefGoogle Scholar
  100. Teplitski M, Merighi M, Gao M, Robinson J (2011) Interaction of cell-to-cell signals in soil bacterial communities. In: Witzany G (ed) Biocommunication in soil microorganisms, soil biology, vol 23. Springer, Berlin/Heidelberg, pp 369–401CrossRefGoogle Scholar
  101. Tun-Garrido C, Bustos P, Gonzalez V, Brom S (2003) Conjugative transfer of p42a from Rhizobium etliCFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 185:1681–1692PubMedCrossRefGoogle Scholar
  102. Uheda E, Daimon H, Yoshizako F (2001) Colonization and invasion of peanut (Arachis hypogeaL.) roots by gusA-marked Bradyrhizobiumsp. Can J Bot 79:733–739Google Scholar
  103. Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H et al (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126PubMedCrossRefGoogle Scholar
  104. Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberumsp. nov. and Burkholderia phymatumsp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 5:507–512CrossRefGoogle Scholar
  105. von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482CrossRefGoogle Scholar
  106. Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signalling and fungal resistance in Arabidopsis. Plant Cell 20:471–481PubMedCrossRefGoogle Scholar
  107. Wang B, Yeun LH, Xue J-Y, Liu Y, Ané JM, Qiu Y-L (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytologist 186:514–525PubMedCrossRefGoogle Scholar
  108. Waters CM, Bassler BL (2005) Quorum sensing: Cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  109. Wilkinson A, Danino V, Wisniewski-Dye F, Lithgow JK, Downie JA (2002) N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum sensing genes that regulate plasmid transfer. J Bacteriol 184:4510–4519PubMedCrossRefGoogle Scholar
  110. Wisniewski-Dye F, Downie JA (2002) Quorum sensing in Rhizobium. Antonie Van Leeuwenhoek 81:397–407PubMedCrossRefGoogle Scholar
  111. Wisniewski-Dye F, Jones J, Chhabra SR, Downie JA (2002) raiRgenes are part of the quorum sensing network controlled by cinIand cinRin Rhizobium leguminosarum. J Bacteriol 184:1597–1606PubMedCrossRefGoogle Scholar
  112. Yang M, Sun K, Zhou L, Yang R, Zhong Z, Zhu J (2009) Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium lotireveals the important role of quorum sensing in symbiotic nodulation. Can J Microbiol 55:210–214PubMedCrossRefGoogle Scholar
  113. Zheng H, Zhong Z, Lai X, Chen W-X, Li S, Zhu J (2006) A LuxR/LuxI-type quorum sensing system in a plant bacterium Mesorhizobium tianshanensecontrols symbiotic nodulation. J Bacteriol 188:1943–1949PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Molecular, Cell and Developmental BiologyUniversity of California-Los AngelesLos AngelesUSA
  2. 2.Molecular Biology InstituteUniversity of California-Los AngelesLos AngelesUSA

Personalised recommendations