Induction and Suppression of Herbivore-Induced Indirect Defenses

  • Juan M. Alba
  • Silke Allmann
  • Joris J. Glas
  • Bernardus C. J. Schimmel
  • Eleni A. Spyropoulou
  • Marije Stoops
  • Carlos Villarroel
  • Merijn R. Kant
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 14)

Abstract

Plants release volatiles into the air. Upon herbivory, the amounts they release from the vegetative tissues increases dramatically. Although the physiological necessity for this increased emission is not fully understood, it has interesting consequences, the most important one being that foraging predators and host-searching parasitoids use these signals to track down plants with prey. This process is referred to as “indirect defense” since these responses can augment the plant’s own “direct” defenses, such as structural barriers and toxins, when they result in decreased herbivory via increased predation. Here we will describe how plants organize indirect defenses and how herbivores have adapted to interfere with these processes.

Keywords

Salicylic Acid Jasmonic Acid Glandular Trichome Plant Volatile Jasmonic Acid Signaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alba JM, Montserrat M, Fernández-Muñoz R (2009) Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Exp Appl Acarol 47:35–47PubMedCrossRefGoogle Scholar
  2. Alba JM, Glas JJ, Schimmel BCJ, Kant MR (2011) Avoidance and suppression of plant defenses by herbivores and pathogens. J Plant Int 6:221–227CrossRefGoogle Scholar
  3. Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949CrossRefGoogle Scholar
  4. Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, Teal PEA (2007) Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci USA 104:12976–12981PubMedCrossRefGoogle Scholar
  5. Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329:1075–1078PubMedCrossRefGoogle Scholar
  6. Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 135:2025–2037PubMedCrossRefGoogle Scholar
  7. Ament K, Van Schie CC, Bouwmeester HJ, Haring MA, Schuurink RC (2006) Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E, E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta 224:1197–1208PubMedCrossRefGoogle Scholar
  8. Ament K, Krasikov V, Allmann S, Rep M, Takken FLW, Schuurink RC (2010) Methyl salicylate production in tomato affects biotic interactions. Plant J 62:124–134PubMedCrossRefGoogle Scholar
  9. Anten NPR, Pierik R (2010) Moving resources away from the herbivore: regulation and adaptive significance. New Phytol 188:644–645Google Scholar
  10. Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923PubMedCrossRefGoogle Scholar
  11. Bede JC, McNeil JN, Tobe SS (2002) The role of neuropeptides in caterpillar nutritional ecology. Peptides 28:185–196CrossRefGoogle Scholar
  12. Bede JC, Musser RO, Felton GW, Korth KL (2006) Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoids biosynthesis. Plant Mol Biol 60:519–531PubMedCrossRefGoogle Scholar
  13. Bernays (1999) When host choice is a problem for a generalist herbivore: experiments with the whitefly, Bemisia tabaci. Ecol Entomol 24:260–267CrossRefGoogle Scholar
  14. Bleeker PM, Diergaarde PJ, Ament K, Schütz S, Johne B, Dijkink J, Hiemstra H, de Gelder R, de Both MTJ, Sabelis MW, Haring MA, Schuurink RC (2011) Tomato-produced 7-epizingiberene and R-curcumene act as repellents to whiteflies. Phytochemistry 72:68–73PubMedCrossRefGoogle Scholar
  15. Bonaventure G, Baldwin IT (2010) Transduction of wound and herbivory signals in plastids. Commun Integr Biol 34:313–317CrossRefGoogle Scholar
  16. Bonaventure G, VanDoorn A, Baldwin IT (2011) Herbivore-associated elicitors: FAC signaling and metabolism. http://www.cell.com/trends/plant-sci-639ence/abstract/S1360-1385%2811%2900021-5. Trends Plant Sci 16:294–299PubMedCrossRefGoogle Scholar
  17. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274PubMedCrossRefGoogle Scholar
  18. Bruessow F, Gouhier-Darimont C, Buchala A, Metraux JP, Reymond P (2010) Insect eggs suppress plant defence against chewing herbivores. Plant J 62:876–885PubMedCrossRefGoogle Scholar
  19. Colquhoun TA, Schimmel BCJ, Kim JY, Reinhardt D, Cline K, Clark DG (2010) A Petunia chorismate mutase specialized for the production of floral volatiles. Plant J 61:145–155PubMedCrossRefGoogle Scholar
  20. De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573CrossRefGoogle Scholar
  21. De Moraes CM, Mescher M, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580PubMedCrossRefGoogle Scholar
  22. Degenhardt J, Hiltpold I, Kollner TG, Frey M, Gierl A, Gershenzon J, Hibbard BE, Ellersieck MR, Turlings TCJ (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc Natl Acad Sci USA 106:13213–13218PubMedCrossRefGoogle Scholar
  23. Despres L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307PubMedCrossRefGoogle Scholar
  24. Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Neth J Zool 38:148–165CrossRefGoogle Scholar
  25. Dicke M, van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Ent Exp Appl 97:237–249CrossRefGoogle Scholar
  26. Diezel C, von Dahl CC, Gaquerel E, Baldwin IT (2009) Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol 150:1576–1586PubMedCrossRefGoogle Scholar
  27. Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S, Clement SL, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc Natl Acad Sci USA 97:6218–6223PubMedCrossRefGoogle Scholar
  28. Dudareva N, Pichersky E, Gershenzon (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902PubMedCrossRefGoogle Scholar
  29. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440CrossRefGoogle Scholar
  30. Eichenseer H, Mathews MC, Bi JL, Murphy JB, Felton GW (1999) Salivary glucose oxidase: multifunctional roles for Helicoverpa zea? Arch Insect Biochem Physiol 42:99–109PubMedCrossRefGoogle Scholar
  31. Eichenseer H, Mathews MC, Powell JS, Felton GW (2010) Survey of a salivary effector in caterpillars: glucose oxidase variation and correlation with host range. J Chem Ecol 36:885–897PubMedCrossRefGoogle Scholar
  32. Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 49:171–194CrossRefGoogle Scholar
  33. Fahn A (1988) Secretory-tissues in vascular plants. New Phytol 108:229–257CrossRefGoogle Scholar
  34. Fatouros NE, Broekgaarden C, Bukovinszkine’Kiss G, van Loon JJA, Mumm R, Huigens ME, Dicke M, Hilker M (2008) Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proc Natl Acad Sci USA 105:10033–10038PubMedCrossRefGoogle Scholar
  35. Feyereisen R (1999) Insect p450 enzymes. Annu Rev Entomol 44:507–533PubMedCrossRefGoogle Scholar
  36. Gershenzon J, McCaskill D, Rajaonarivony JI, Mihaliak C, Karp F, Croteau R (1992) Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal Biochem 200:130–138PubMedCrossRefGoogle Scholar
  37. Hall D, MacGregor K, Nijsse J, Bown A (2004) Footsteps from insect larvae damage leaf surfaces and initiate rapid responses. Eur J Plant Pathol 110:441–447CrossRefGoogle Scholar
  38. Hartl M, Giri AP, Kaur H, Baldwin IT (2011) Serine protease inhibitors specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development. Plant Cell 22:4158–4175Google Scholar
  39. Hematy K, Cherk C, Somerville S (2009) Host–pathogen warfare at the plant cell wall. Curr Opin Plant Biol 12:406–413PubMedCrossRefGoogle Scholar
  40. Hilker M, Meiners T (2010) How do plants “notice” attack by herbivorous arthropods? Biol Rev 85:267–280PubMedCrossRefGoogle Scholar
  41. Hoballah MEF, Turlings TCJ (2001) Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. Evol Ecol Res 3:553–565Google Scholar
  42. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66PubMedCrossRefGoogle Scholar
  43. Kahl J, Siemens DH, Aerts RJ, Gabler R, Kuhnemann F, Preston CA, Baldwin IT (2000) Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210:336–342PubMedCrossRefGoogle Scholar
  44. Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 135:483–495PubMedCrossRefGoogle Scholar
  45. Kant MR, Sabelis MW, Haring MA, Schuurink RC (2008) Intraspecific variation in a generalist herbivore accounts for induction and impact of host-plant defenses. Proc Royal Soc B Biol Sci 275:443–452CrossRefGoogle Scholar
  46. Kant MR, Bleeker PM, Van Wijk M, Schuurink RC, Haring MA (2009) Plant volatiles in defence. Adv Bot Res 51:613–666CrossRefGoogle Scholar
  47. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144PubMedCrossRefGoogle Scholar
  48. Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668PubMedCrossRefGoogle Scholar
  49. Labandeira CC (1997) Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annu Rev Ecol Sys 28:153–193CrossRefGoogle Scholar
  50. Lee S, Badieyan S, Bevan DR, Herde M, Gatz C, Tholl D (2010) Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. Proc Natl Acad Sci USA 107:21205–21210PubMedCrossRefGoogle Scholar
  51. Li XC, Baudry J, Berenbaum MR, Schuler MA (2004) Structural and functional divergence of insect CYP6B proteins: from specialist to generalist cytochrome P450. Proc Natl Acad Sci USA 101:2939–2944PubMedCrossRefGoogle Scholar
  52. Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. South African J Bot 76:612–631CrossRefGoogle Scholar
  53. Matsushima R, Ozawa R, Uefune M, Gotoh T, Takabayashi J (2006) Intraspecific variation in the kanzawa spider mite differentially affects induced defensive response in lima bean plants. J Chem Ecol 32:2501–2512PubMedCrossRefGoogle Scholar
  54. Mattiacci L, Dicke M, Posthumus MA (1995) Beta-glucosidase—an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc Natl Acad Sci USA 92:2036–2040PubMedCrossRefGoogle Scholar
  55. Merkx-Jacques M, Despland E, Bede JC (2008) Nutrient utilization by caterpillars of the generalist beet armyworm, Spodoptera exigua. Physiol Entomol 33:51–61CrossRefGoogle Scholar
  56. Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168PubMedCrossRefGoogle Scholar
  57. Musser RO, Cipollini DF, Hum-Musser SM, Williams SA, Brown JK, Felton GW (2005a) Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Arch Insect Biochem Physiol 58:128–137PubMedCrossRefGoogle Scholar
  58. Musser RO, Kwon HS, Williams SA, White CJ, Romano MA, Holt SM, Bradbury S, Brown JK, Felton GW (2005b) Evidence that caterpillar labial saliva suppresses infectivity of potential bacterial pathogens. Arch Insect Biochem Physiol 58:138–144PubMedCrossRefGoogle Scholar
  59. Musser RO, Farmer E, Peiffer M, Williams SA, Felton GW (2006) Ablation of caterpillar labial salivary glands: technique for determining the role of saliva in insect–plant interactions. J Chem Ecol 32:981–992PubMedCrossRefGoogle Scholar
  60. Ozawa R, Arimura G, Takabayashi J, Shimoda T, Nishioka T (2000) Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol 41:391–398PubMedCrossRefGoogle Scholar
  61. Peiffer M, Felton GW (2009) Do caterpillars secrete “oral secretions”? J Chem Ecol 35:326–335PubMedCrossRefGoogle Scholar
  62. Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811PubMedCrossRefGoogle Scholar
  63. Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316PubMedCrossRefGoogle Scholar
  64. Poelman EH, van Loon JJA, Dicke M (2008) Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci 13:534–541PubMedCrossRefGoogle Scholar
  65. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737PubMedCrossRefGoogle Scholar
  66. Riffell JA, Lei H, Christensen TA, Hildebrand JG (2009) Characterization and coding of behaviorally significant odor mixtures. Curr Biol 19:335–340PubMedCrossRefGoogle Scholar
  67. Sabelis MW, Janssen A, Kant MR (2001) The enemy of my enemy is my ally. Science 291:2104–2105PubMedCrossRefGoogle Scholar
  68. Sallaud C, Rontein D, Onillon S, Jabès F, Duffé P, Giacalone C, Thoraval S, Escoffier C, Herbette G, Leonhardt N, Causse M, Tissier A (2009) A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21:301–317PubMedCrossRefGoogle Scholar
  69. Sarmento RA, Lemos F, Bleeker PM, Schuurink RC, Pallini A, Oliveira MGA, Lima GR, Kant MR, Sabelis MW, Janssen A (2011) A herbivore that manipulates plant defence. Ecol Lett 14:229–236PubMedCrossRefGoogle Scholar
  70. Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA 106:10865–10870PubMedCrossRefGoogle Scholar
  71. Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn HT, Teal PEA (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci USA 103:8894–8899PubMedCrossRefGoogle Scholar
  72. Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH, Teal PEA (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci USA 106:653–657PubMedCrossRefGoogle Scholar
  73. Schoonhoven LM, Jermy T, van Loon JJA (1998) Insect–plant biology: from physiology to evolution. Chapman & Hall, LondonGoogle Scholar
  74. Shroff R, Vergara F, Muck A, Svatos A, Gershenzon J (2008) Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc Natl Acad Sci USA 105:6196–6201PubMedCrossRefGoogle Scholar
  75. Shuler MA (1996) The role of cytochrome P450 monooxygenases in plant–insect interactions. Plant Phys 112:1411–1419CrossRefGoogle Scholar
  76. Simmons AT, Gurr GM (2005) Trichomes of lycopersicon species and their hybrids: effects on pests and natural enemies. Agric For Entomol 7:265–276CrossRefGoogle Scholar
  77. Steppuhn A, Baldwin IT (2007) Resistance management in a native plant: nicotine prevents herbivores from compensating for plant proteinase inhibitors. Ecol Lett 10:499–511PubMedCrossRefGoogle Scholar
  78. Takabayashi J, Shimoda T, Dicke M, Ashihara W, Takafuji A (2000) Induced response of tomato plants to injury by green and red strains of Tetranychus urticae. Exp Appl Acarol 24:377–383PubMedCrossRefGoogle Scholar
  79. Thaler J (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688CrossRefGoogle Scholar
  80. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304PubMedCrossRefGoogle Scholar
  81. Tooker JF, Rohr JR, Abrahamson WG, De Moraes CM (2008) Gall insects can avoid and alter indirect plant defenses. New Phytol 178:657–671PubMedCrossRefGoogle Scholar
  82. Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253PubMedCrossRefGoogle Scholar
  83. Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3:956–972PubMedCrossRefGoogle Scholar
  84. Ulland S, Ian E, Mozuraitis R, Borg-Karlson AK, Meadow R, Mustaparta H (2008) Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, noctunidae). Chem Senses 33:35–46PubMedCrossRefGoogle Scholar
  85. Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-mendelian inheritance in action. Proc Natl Acad Sci USA 105:5980–5985PubMedCrossRefGoogle Scholar
  86. Van Loon JJA, de Boer JG, Dicke M (2000) Parasitoid–plant mutualism: parasitoid attack of herbivore increases plant reproduction. Ent Exp Appl 97:219–227CrossRefGoogle Scholar
  87. Van Schie CC, Haring MA, Schuurink RC (2007) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263PubMedCrossRefGoogle Scholar
  88. Van Wijk M, De Bruijn PJA, Sabelis MW (2011) Complex odor from plants under attack: herbivore’s enemies react to the whole, not its parts. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0021742. PLoS One 6:e21742PubMedCrossRefGoogle Scholar
  89. Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216PubMedGoogle Scholar
  90. Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71:3–17CrossRefGoogle Scholar
  91. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697PubMedCrossRefGoogle Scholar
  92. Weech MH, Chapleau M, Pan L, Ide C, Bede JC (2008) Caterpillar saliva interferes with induced Arabidopsis thaliana defense responses via the systemic acquired resistance pathway. J Exp Botany 59:2437–2448Google Scholar
  93. Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506PubMedCrossRefGoogle Scholar
  94. Werker E (2000) Plant trichomes. In: Advances in botanical research incorporating advances in plant pathology, vol 31. Academic, San Diego, pp 6–12Google Scholar
  95. Wu JQ, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24PubMedCrossRefGoogle Scholar
  96. Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875PubMedCrossRefGoogle Scholar
  97. Zhang PJ, Zheng SJ, van Loon JJA, Boland W, David A, Mumm R, Dicke M (2009) Whiteflies interfere with indirect plant defense against spider mites in lima bean. Proc Natl Acad Sci USA 106:21202–21207PubMedCrossRefGoogle Scholar
  98. Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146:852–858PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juan M. Alba
    • 1
  • Silke Allmann
    • 2
  • Joris J. Glas
    • 1
  • Bernardus C. J. Schimmel
    • 1
  • Eleni A. Spyropoulou
    • 2
  • Marije Stoops
    • 1
  • Carlos Villarroel
    • 1
    • 2
  • Merijn R. Kant
    • 1
  1. 1.Department of Population Biology (University of Amsterdam)IBEDAmsterdamThe Netherlands
  2. 2.SILS, Department of Plant PhysiologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations