Control of Programmed Cell Death During Plant Reproductive Development

  • Yadira Olvera-Carrillo
  • Yuliya Salanenka
  • Moritz K. Nowack
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 14)

Abstract

Programmed cell death (PCD) is an actively controlled, genetically encoded self-destruct mechanism of the cell. While many forms of PCD have been described and molecularly dissected in animals, we know to date only little about the control of PCD processes in plants. Nevertheless, plant PCD is a crucial component of a plant’s reaction to its biotic and abiotic environment and a central theme during plant development. In this chapter, we review the communication events triggering and executing, or preventing, PCD during plant reproductive development. These comprise intracellular communication, as well as signaling between cells and tissues, and the intricate communication between genetically distinct individuals that are necessary for successful plant reproduction.

Keywords

Programme Cell Death Pollen Tube Female Gametophyte Aleurone Layer Megaspore Mother Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372PubMedCrossRefGoogle Scholar
  2. Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21:1453–1472PubMedCrossRefGoogle Scholar
  3. Baek D, Nam J, Koo YD, Kim DH, Lee J, Jeong JC, Kwak SS, Chung WS, Lim CO, Bahk JD, Hong JC, Lee SY, Kawai-Yamada M, Uchimiya H, Yun DJ (2004) Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and -independent processes. Plant Mol Biol 56:15–27PubMedCrossRefGoogle Scholar
  4. Beeckman T, De Rycke R, Viane R, Inzé D (2000) Histological study of seed coat development in Arabidopsis thaliana. J Plant Res 113:139–148CrossRefGoogle Scholar
  5. Beers EP, Woffenden BJ, Zhao C (2000) Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol Biol 44:399–415PubMedCrossRefGoogle Scholar
  6. Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650PubMedCrossRefGoogle Scholar
  7. Berger F (2003) Endosperm: the crossroad of seed development. Curr Opin Plant Biol 6:42–50PubMedCrossRefGoogle Scholar
  8. Berger F, Grini PE, Schnittger A (2006) Endosperm: an integrator of seed growth and development. Curr Opin Plant Biol 9:664–670PubMedCrossRefGoogle Scholar
  9. Bethke PC, Jones RL (2000) Vacuoles and prevacuolar compartments. Curr Opin Plant Biol 3:469–475PubMedCrossRefGoogle Scholar
  10. Bethke PC, Jones RL (2001) Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J 25:19–29PubMedCrossRefGoogle Scholar
  11. Bethke PC, Lonsdale JE, Fath A, Jones RL (1999) Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11:1033–1046PubMedGoogle Scholar
  12. Bethke PC, Fath A, Spiegel YN, Hwang Y, Jones RL (2002) Abscisic acid, gibberellin and cell viability in cereal aleurone. Euphytica 126:3–11CrossRefGoogle Scholar
  13. Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341PubMedCrossRefGoogle Scholar
  14. Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188PubMedCrossRefGoogle Scholar
  15. Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Publishing, New YorkGoogle Scholar
  16. Birchler JA (1993) Dosage analysis of maize endosperm development. Annu Rev Genet 27:181–204PubMedCrossRefGoogle Scholar
  17. Blanvillain R, Young B, Cai YM, Hecht V, Varoquaux F, Delorme V, Lancelin JM, Delseny M, Gallois P (2011) The Arabidopsis peptide kiss of death is an inducer of programmed cell death. EMBO J 30:1173–1183PubMedCrossRefGoogle Scholar
  18. Boren M, Hoglund AS, Bozhkov P, Jansson C (2006) Developmental regulation of a VEIDase caspase-like proteolytic activity in barley caryopsis. J Exp Bot 57:3747–3753PubMedCrossRefGoogle Scholar
  19. Bosch M, Franklin-Tong VE (2008) Self-incompatibility in papaver: signalling to trigger PCD in incompatible pollen. J Exp Bot 59:481–490PubMedCrossRefGoogle Scholar
  20. Bosch M, Poulter NS, Vatovec S, Franklin-Tong VE (2008) Initiation of programmed cell death in self-incompatibility: role for cytoskeleton modifications and several caspase-like activities. Mol Plant 1:879–887PubMedCrossRefGoogle Scholar
  21. Bozhkov PV, Filonova LH, Suarez MF, Helmersson A, Smertenko AP, Zhivotovsky B, von Arnold S (2004) VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death Differ 11:175–182PubMedCrossRefGoogle Scholar
  22. Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA Jr, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci USA 102:14463–14468PubMedCrossRefGoogle Scholar
  23. Bozhkov PV, Smertenko AP, Zhivotovsky B (2010) Aspasing out metacaspases and caspases: proteases of many trades. Sci Signal 3:pe48PubMedCrossRefGoogle Scholar
  24. Cacas JL (2010) Devil inside: does plant programmed cell death involve the endomembrane system? Plant Cell Environ 33:1453–1473PubMedGoogle Scholar
  25. Chen G, Zhang B, Zhao Z, Sui Z, Zhang H, Xue Y (2010) ‘A life or death decision’ for pollen tubes in S-RNase-based self-incompatibility. J Exp Bot 61:2027–2037PubMedCrossRefGoogle Scholar
  26. Christensen CA, Subramanian S, Drews GN (1998) Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Dev Biol 202:136–151PubMedCrossRefGoogle Scholar
  27. Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown J, Shaw JM, Drews GN (2002) Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell 14:2215–2232PubMedCrossRefGoogle Scholar
  28. Costa LM, Gutierrez-Marcos JF, Dickinson HG (2004) More than a yolk: the short life and complex times of the plant endosperm. Trends Plant Sci 9:507–514PubMedCrossRefGoogle Scholar
  29. Dahiya P (2003) Role of death in providing lifeline to plants. Trends Plant Sci 8:462–465PubMedCrossRefGoogle Scholar
  30. Dominguez F, Moreno J, Cejudo FJ (2001) The nucellus degenerates by a process of programmed cell death during the early stages of wheat grain development. Planta 213:352–360PubMedCrossRefGoogle Scholar
  31. Dominguez F, Moreno J, Cejudo FJ (2004) A gibberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death. J Biol Chem 279:11530–11536PubMedCrossRefGoogle Scholar
  32. Dresselhaus T (2006) Cell–cell communication during double fertilization. Curr Opin Plant Biol 9:41–47PubMedCrossRefGoogle Scholar
  33. Duchniewicz M, Germaniuk A, Westermann B, Neupert W, Schwarz E, Marszalek J (1999) Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol Cell Biol 19:8201–8210PubMedGoogle Scholar
  34. Fath A, Bethke PC, Jones RL (1999) Barley aleurone cell death is not apoptotic: characterization of nuclease activities and DNA degradation. Plant J 20:305–315CrossRefGoogle Scholar
  35. Fath A, Bethke P, Lonsdale J, Meza-Romero R, Jones R (2000) Programmed cell death in cereal aleurone. Plant Mol Biol 44:255–266PubMedCrossRefGoogle Scholar
  36. Fath A, Bethke PC, Jones RL (2001) Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol 126:156–166PubMedCrossRefGoogle Scholar
  37. Fath A, Bethke P, Beligni V, Jones R (2002) Active oxygen and cell death in cereal aleurone cells. J Exp Bot 53:1273–1282PubMedCrossRefGoogle Scholar
  38. Faure JE, Rotman N, Fortune P, Dumas C (2002) Fertilization in Arabidopsis thaliana wild type: developmental stages and time course. Plant J 30:481–488PubMedCrossRefGoogle Scholar
  39. Gadjev I, Stone JM, Gechev TS (2008) Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. Int Rev Cell Mol Biol 270:87–144PubMedCrossRefGoogle Scholar
  40. Gilroy S, Jones RL (1992) Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proc Natl Acad Sci USA 89:3591–3595PubMedCrossRefGoogle Scholar
  41. Giuliani C, Consonni G, Gavazzi G, Colombo M, Dolfini S (2002) Programmed cell death during embryogenesis in maize. Ann Bot (Lond) 90:287–292CrossRefGoogle Scholar
  42. Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229PubMedGoogle Scholar
  43. Greenwood JS, Helm M, Gietl C (2005) Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during ricinus seed development. Proc Natl Acad Sci USA 102:2238–2243PubMedCrossRefGoogle Scholar
  44. Gross-Hardt R, Kagi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jurgens G, Grossniklaus U (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol 5:e47PubMedCrossRefGoogle Scholar
  45. Guiboileau A, Sormani R, Meyer C, Masclaux-Daubresse C (2010) Senescence and death of plant organs: nutrient recycling and developmental regulation. C R Biol 333:382–391PubMedCrossRefGoogle Scholar
  46. Guo WJ, Ho TH (2008) An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiol 147:1710–1722PubMedCrossRefGoogle Scholar
  47. Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A, Nakagawa T, Kanaoka MM, Sasaki N, Nakano A, Berger F, Higashiyama T (2011) Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr Biol 21:497–502PubMedCrossRefGoogle Scholar
  48. Hara-Nishimura I, Hatsugai N (2011) The role of vacuole in plant cell death. Cell Death Differ 18:1298–1304PubMedCrossRefGoogle Scholar
  49. Harper JL, Lovell PH, Moore KG (1970) The shapes and sizes of seeds. Ann Rev Ecol Syst 1:327–356CrossRefGoogle Scholar
  50. Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858PubMedCrossRefGoogle Scholar
  51. Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2006) A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11:905–911PubMedCrossRefGoogle Scholar
  52. Haughn G, Chaudhury A (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10:472–477PubMedCrossRefGoogle Scholar
  53. Hayward AP, Tsao J, Dinesh-Kumar SP (2009) Autophagy and plant innate immunity: defense through degradation. Semin Cell Dev Biol 20:1041–1047PubMedCrossRefGoogle Scholar
  54. Heimovaara-Dijkstra S, Vanduijn B, Libbenga KR, Heidekamp F, Wang M (1994) Abscisic acid-induced membrane potential changes in barley aleurone protoplasts: a possible relevance for the regulation of Rab gene expression. Plant Cell Physiol 35:743–750Google Scholar
  55. Heine GF, Hernandez JM, Grotewold E (2004) Two cysteines in plant R2R3 MYB domains participate in REDOX-dependent DNA binding. J Biol Chem 279:37878–37885PubMedCrossRefGoogle Scholar
  56. Helm M, Schmid M, Hierl G, Terneus K, Tan L, Lottspeich F, Kieliszewski MJ, Gietl C (2008) KDEL-tailed cysteine endopeptidases involved in programmed cell death, intercalation of new cells, and dismantling of extensin scaffolds. Am J Bot 95:1049–1062PubMedCrossRefGoogle Scholar
  57. Henke N, Lisak DA, Schneider L, Habicht J, Pergande M, Methner A (2011) The ancient cell death suppressor BAX inhibitor-1. Cell Calcium. 2011 Sep;50(3):251–60Google Scholar
  58. Higashiyama T (2002) The synergid cell: attractor and acceptor of the pollen tube for double fertilization. J Plant Res 115:149–160PubMedCrossRefGoogle Scholar
  59. Higashiyama T (2010) Peptide signaling in pollen–pistil interactions. Plant Cell Physiol 51:177–89PubMedCrossRefGoogle Scholar
  60. Hiratsuka R, Terasaka O (2011) Pollen tube reuses intracellular components of nucellar cells undergoing programmed cell death in pinus densiflora. Protoplasma 248:339–351PubMedCrossRefGoogle Scholar
  61. Hiscock SJ, Allen AM (2008) Diverse cell signalling pathways regulate pollen-stigma interactions: the search for consensus. New Phytol 179:286–317PubMedCrossRefGoogle Scholar
  62. Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54PubMedCrossRefGoogle Scholar
  63. Holloway SJ, Friedman WE (2008) Embryological features of tofieldia glutinosa and their bearing on the early diversification of monocotyledonous plants. Ann Bot 102:167–182PubMedCrossRefGoogle Scholar
  64. Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159PubMedCrossRefGoogle Scholar
  65. Ingram GC (2010) Family life at close quarters: communication and constraint in angiosperm seed development. Protoplasma 247:195–214PubMedCrossRefGoogle Scholar
  66. Ishikawa R, Ohnishi T, Kinoshita Y, Eiguchi M, Kurata N, Kinoshita T (2011) Rice interspecies hybrids show precocious or delayed developmental transitions in the endosperm without change to the rate of syncytial nuclear division. Plant J 65:798–806PubMedCrossRefGoogle Scholar
  67. Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19:3549–3562PubMedCrossRefGoogle Scholar
  68. Ivanov R, Fobis-Loisy I, Gaude T (2010) When no means no: guide to brassicaceae self-incompatibility. Trends Plant Sci 15:387–394PubMedCrossRefGoogle Scholar
  69. Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005) Rice undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17:2705–2722PubMedCrossRefGoogle Scholar
  70. Kagi C, Baumann N, Nielsen N, Stierhof YD, Gross-Hardt R (2010) The gametic central cell of Arabidopsis determines the lifespan of adjacent accessory cells. Proc Natl Acad Sci USA 107:22350–22355PubMedCrossRefGoogle Scholar
  71. Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax inhibitor-1 (AtBI-1). Proc Natl Acad Sci USA 98:12295–12300PubMedCrossRefGoogle Scholar
  72. Kawanabe T, Ariizumi T, Kawai-Yamada M, Uchimiya H, Toriyama K (2006) Abolition of the tapetum suicide program ruins microsporogenesis. Plant Cell Physiol 47:784–787PubMedCrossRefGoogle Scholar
  73. Kawashima T, Goldberg RB (2010) The suspensor: not just suspending the embryo. Trends Plant Sci 15:23–30PubMedCrossRefGoogle Scholar
  74. Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science 330:968–971PubMedCrossRefGoogle Scholar
  75. Kinoshita T (2007) Reproductive barrier and genomic imprinting in the endosperm of flowering plants. Genes Genet Syst 82:177–186PubMedCrossRefGoogle Scholar
  76. Knetsch M, Wang M, Snaar-Jagalska BE, Heimovaara-Dijkstra S (1996) Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 8:1061–1067PubMedGoogle Scholar
  77. Kondou Y, Nakazawa M, Kawashima M, Ichikawa T, Yoshizumi T, Suzuki K, Ishikawa A, Koshi T, Matsui R, Muto S, Matsui M (2008) RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth. Plant Physiol 147:1924–1935PubMedCrossRefGoogle Scholar
  78. Kubo K, Entani T, Takara A, Wang N, Fields AM, Hua Z, Toyoda M, Kawashima S, Ando T, Isogai A, Kao TH, Takayama S (2010) Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330:796–799PubMedCrossRefGoogle Scholar
  79. Kuo A, Cappelluti S, Cervantes-Cervantes M, Rodriguez M, Bush DS (1996) Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells. Plant Cell 8:259–269PubMedGoogle Scholar
  80. Larsson E, Sitbon F, von Arnold S (2008) Polar auxin transport controls suspensor fate. Plant Signal Behav 3:469–470PubMedCrossRefGoogle Scholar
  81. Lausser A, Dresselhaus T (2010) Sporophytic control of pollen tube growth and guidance in grasses. Biochem Soc Trans 38:631–634PubMedCrossRefGoogle Scholar
  82. Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014PubMedCrossRefGoogle Scholar
  83. Li DH, Yang X, Cui KM (2007a) Formation of archegonium chamber is associated with nucellar-cell programmed cell death in ginkgo biloba. Protoplasma 231:173–181PubMedCrossRefGoogle Scholar
  84. Li S, Samaj J, Franklin-Tong VE (2007b) A mitogen-activated protein kinase signals to programmed cell death induced by self-incompatibility in papaver pollen. Plant Physiol 145:236–245PubMedCrossRefGoogle Scholar
  85. Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson ZA, Zhang D (2011a) PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol 156:615–630PubMedCrossRefGoogle Scholar
  86. Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Zhang Q, Wu C (2011b) Rice APOPTOSIS INHIBITOR5 coupled with Two DEAD-Box adenosine 5′-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23:1416–1434PubMedCrossRefGoogle Scholar
  87. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136PubMedCrossRefGoogle Scholar
  88. Lombardi L, Casani S, Ceccarelli N, Galleschi L, Picciarelli P, Lorenzi R (2007a) Programmed cell death of the nucellus during sechium edule Sw. Seed development is associated with activation of caspase-like proteases. J Exp Bot 58:2949–2958PubMedCrossRefGoogle Scholar
  89. Lombardi L, Ceccarelli N, Picciarelli P, Lorenzi R (2007b) DNA degradation during programmed cell death in phaseolus coccineus suspensor. Plant Physiol Biochem 45:221–227PubMedCrossRefGoogle Scholar
  90. Lombardi L, Ceccarelli N, Picciarelli P, Sorce C, Lorenzi R (2010) Nitric oxide and hydrogen peroxide involvement during programmed cell death of sechium edule nucellus. Physiol Plant 140:89–102PubMedCrossRefGoogle Scholar
  91. Ma W, Berkowitz GA (2007) The grateful dead: calcium and cell death in plant innate immunity. Cell Microbiol 9:2571–2585PubMedCrossRefGoogle Scholar
  92. Ma H, Sundaresan V (2010) Development of flowering plant gametophytes. Curr Top Dev Biol 91:379–412PubMedCrossRefGoogle Scholar
  93. Madrid EN, Friedman WE (2010) Female gametophyte and early seed development in peperomia (piperaceae). Am J Bot 97:1–14PubMedCrossRefGoogle Scholar
  94. Marton ML, Dresselhaus T (2010) Female gametophyte-controlled pollen tube guidance. Biochem Soc Trans 38:627–630PubMedCrossRefGoogle Scholar
  95. Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun TP (2006) Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 45:804–818PubMedCrossRefGoogle Scholar
  96. Moll C, von Lyncker L, Zimmermann S, Kagi C, Baumann N, Twell D, Grossniklaus U, Gross-Hardt R (2008) CLO/GFA1 and ATO are novel regulators of gametic cell fate in plants. Plant J 56:913–921PubMedCrossRefGoogle Scholar
  97. Moller B, Weijers D (2009) Auxin control of embryo patterning. Cold Spring Harb Perspect Biol 1:a001545PubMedCrossRefGoogle Scholar
  98. Morris K, Linkies A, Muller K, Oracz K, Wang X, Lynn JR, Leubner-Metzger G, Finch-Savage WE (2011) Regulation of seed germination in the close Arabidopsis relative lepidium sativum: a global tissue-specific transcript analysis. Plant Physiol 155:1851–1870PubMedCrossRefGoogle Scholar
  99. Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520PubMedCrossRefGoogle Scholar
  100. Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, Hara-Nishimura I (2005) A vacuolar processing enzyme, deltaVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17:876–887PubMedCrossRefGoogle Scholar
  101. Nowack MK, Ungru A, Bjerkan KN, Grini PE, Schnittger A (2010) Reproductive cross-talk: seed development in flowering plants. Biochem Soc Trans 38:604–612PubMedCrossRefGoogle Scholar
  102. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604PubMedCrossRefGoogle Scholar
  103. Ohashi-Ito K, Fukuda H (2010) Transcriptional regulation of vascular cell fates. Curr Opin Plant Biol 13:670–676PubMedCrossRefGoogle Scholar
  104. Okuda S, Higashiyama T (2010) Pollen tube guidance by attractant molecules: LUREs. Cell Struct Funct 35:45–52PubMedCrossRefGoogle Scholar
  105. Olsen OA (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16 Suppl:S214–S227PubMedGoogle Scholar
  106. Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V (2009) Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:1684–1689PubMedCrossRefGoogle Scholar
  107. Palma K, Kermode AR (2003) Metabolism of hydrogen peroxide during reserve mobilization and programmed cell death of barley (hordeum vulgare L.) aleurone layer cells. Free Radic Biol Med 35:1261–1270PubMedCrossRefGoogle Scholar
  108. Papini A, Mosti S, Milocani E, Tani G, Di Falco P, Brighigna L Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae). Protoplasma, 2011 Oct; 248(4):651–662Google Scholar
  109. Penfield S, Graham S, Graham IA (2005) Storage reserve mobilization in germinating oilseeds: Arabidopsis as a model system. Biochem Soc Trans 33:380–383PubMedCrossRefGoogle Scholar
  110. Poulter NS, Wheeler MJ, Bosch M, Franklin-Tong VE (2010) Self-incompatibility in papaver: identification of the pollen S-determinant PrpS. Biochem Soc Trans 38:588–592PubMedCrossRefGoogle Scholar
  111. Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W (2011) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585:231–239PubMedCrossRefGoogle Scholar
  112. Ravi M, Marimuthu MP, Siddiqi I (2008) Gamete formation without meiosis in Arabidopsis. Nature 451:1121–1124PubMedCrossRefGoogle Scholar
  113. Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing between different modes. J Exp Bot 59:435–444PubMedCrossRefGoogle Scholar
  114. Riggs DR (2004) Programmed cell death events during reproductive development. In: Gray J (ed) Programmed cell death in plants. Blackwell Publishing, Oxford, pp 71–105Google Scholar
  115. Ritchie S, Gilroy S (1998) Calcium-dependent protein phosphorylation may mediate the gibberellic acid response in barley aleurone. Plant Physiol 116:765–776PubMedCrossRefGoogle Scholar
  116. Rodkiewicz B (1970) Callose in cell wall during megasporogenesis in angiosperms. Planta 93:39–47CrossRefGoogle Scholar
  117. Rogers HJ (2005) Cell death and organ development in plants. Curr Top Dev Biol 71:225–261PubMedCrossRefGoogle Scholar
  118. Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE (2003) Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol 13:432–436PubMedCrossRefGoogle Scholar
  119. Rotman N, Gourgues M, Guitton AE, Faure JE, Berger F (2008) A dialogue between the SIRENE pathway in synergids and the fertilization independent seed pathway in the central cell controls male gamete release during double fertilization in Arabidopsis. Mol Plant 1:659–666PubMedCrossRefGoogle Scholar
  120. Russell SD (1992) Double fertilization. Int Rev Cytol 140:357–388CrossRefGoogle Scholar
  121. Sabelli PA, Larkins BA (2009) The development of endosperm in grasses. Plant Physiol 149:14–26PubMedCrossRefGoogle Scholar
  122. Sandaklie-Nikolova L, Palanivelu R, King EJ, Copenhaver GP, Drews GN (2007) Synergid cell death in Arabidopsis is triggered following direct interaction with the pollen tube. Plant Physiol 144:1753–1762PubMedCrossRefGoogle Scholar
  123. Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–3341PubMedGoogle Scholar
  124. Shi DQ, Yang WC (2011) Ovule development in Arabidopsis: progress and challenge. Curr Opin Plant Biol 14:74–80PubMedCrossRefGoogle Scholar
  125. Sorensen AM, Krober S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423PubMedCrossRefGoogle Scholar
  126. Sprunck S, Gross-Hardt R (2011) Nuclear behavior, cell polarity, and cell specification in the female gametophyte. Sex Plant Reprod 24:123–136PubMedCrossRefGoogle Scholar
  127. Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U (2006) Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA-regulated maturation in developing barley seeds. Plant J 47:310–327PubMedCrossRefGoogle Scholar
  128. Sreenivasulu N, Borisjuk L, Junker BH, Mock HP, Rolletschek H, Seiffert U, Weschke W, Wobus U (2010) Barley grain development toward an integrative view. Int Rev Cell Mol Biol 281:49–89PubMedCrossRefGoogle Scholar
  129. Sundstrom JF, Vaculova A, Smertenko AP, Savenkov EI, Golovko A, Minina E, Tiwari BS, Rodriguez-Nieto S, Zamyatnin AA Jr, Valineva T, Saarikettu J, Frilander MJ, Suarez MF, Zavialov A, Stahl U, Hussey PJ, Silvennoinen O, Sundberg E, Zhivotovsky B, Bozhkov PV (2009) Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nat Cell Biol 11:1347–1354PubMedCrossRefGoogle Scholar
  130. Suomeng D, Zhengguang Z, Xiaobo Z, Yuanchao W (2008) Mammalian pro-apoptotic bax gene enhances tobacco resistance to pathogens. Plant Cell Rep 27:1559–1569PubMedCrossRefGoogle Scholar
  131. Swanson SJ, Jones RL (1996) Gibberellic acid induces vacuolar acidification in barley aleurone. Plant Cell 8:2211–2221PubMedGoogle Scholar
  132. Takayama S, Isogai A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56:467–489PubMedCrossRefGoogle Scholar
  133. Tantikanjana T, Nasrallah ME, Nasrallah JB (2010) Complex networks of self-incompatibility signaling in the brassicaceae. Curr Opin Plant Biol 13:520–526PubMedCrossRefGoogle Scholar
  134. Taylor NL, Tan YF, Jacoby RP, Millar AH (2009) Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. J Proteomics 72:367–378PubMedCrossRefGoogle Scholar
  135. Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Differ 18:1279–1288PubMedCrossRefGoogle Scholar
  136. Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433PubMedCrossRefGoogle Scholar
  137. van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59:453–480PubMedCrossRefGoogle Scholar
  138. van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LA, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246PubMedCrossRefGoogle Scholar
  139. Vartapetian AB, Tuzhikov AI, Chichkova NV, Taliansky M, Wolpert TJ (2011) A plant alternative to animal caspases: subtilisin-like proteases. Cell Death Differ 18:1289–1297PubMedCrossRefGoogle Scholar
  140. Vizcay-Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717PubMedCrossRefGoogle Scholar
  141. Vuosku J, Sutela S, Tillman-Sutela E, Kauppi A, Jokela A, Sarjala T, Haggman H (2009) Pine embryogenesis: many licences to kill for a new life. Plant Signal Behav 4:928–932PubMedCrossRefGoogle Scholar
  142. Wang M, Oppedijk BJ, Lu X, Van Duijn B, Schilperoort RA (1996) Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Mol Biol 32:1125–1134PubMedCrossRefGoogle Scholar
  143. Wang M, Oppedijk BJ, Caspers MPM, Lamers GEM, Boot MJ, Geerlings DNG, Bakhuizen B, Meijer AH, van Duijn B (1998) Spatial and temporal regulation of DNA fragmentation in the aleurone of germinating barley. J Exp Bot 49:1293–1301Google Scholar
  144. Watanabe N, Lam E (2006) Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J 45:884–894PubMedCrossRefGoogle Scholar
  145. Watanabe N, Lam E (2009) Bax inhibitor-1, a conserved cell death suppressor, is a key molecular switch downstream from a variety of biotic and abiotic stress signals in plants. Int J Mol Sci 10:3149–3167PubMedCrossRefGoogle Scholar
  146. Wheeler MJ, de Graaf BH, Hadjiosif N, Perry RM, Poulter NS, Osman K, Vatovec S, Harper A, Franklin FC, Franklin-Tong VE (2009) Identification of the pollen self-incompatibility determinant in papaver rhoeas. Nature 459:992–995PubMedCrossRefGoogle Scholar
  147. Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE (2011) Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of papaver. Plant Physiol 156:404–416PubMedCrossRefGoogle Scholar
  148. Williams B, Dickman M (2008) Plant programmed cell death: can’t live with it; can't live without it. Mol Plant Pathol 9:531–544PubMedCrossRefGoogle Scholar
  149. Williams CE, Grotewold E (1997) Differences between plant and animal Myb domains are fundamental for DNA binding activity, and chimeric Myb domains have novel DNA binding specificities. J Biol Chem 272:563–571PubMedCrossRefGoogle Scholar
  150. Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492PubMedCrossRefGoogle Scholar
  151. Woltering EJ (2010) Death proteases: alive and kicking. Trends Plant Sci 15:185–188PubMedCrossRefGoogle Scholar
  152. Wu M, Huang J, Xu S, Ling T, Xie Y, Shen W (2011) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J Exp Bot 62:235–248PubMedCrossRefGoogle Scholar
  153. Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107PubMedCrossRefGoogle Scholar
  154. Yamada K, Shimada T, Nishimura M, Hara-Nishimura I (2005) A VPE family supporting various vacuolar functions in plants. Physiol Plant 123:369–375CrossRefGoogle Scholar
  155. Yamaguchi S, Kamiya Y, Sun T (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J 28:443–453PubMedCrossRefGoogle Scholar
  156. Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117PubMedCrossRefGoogle Scholar
  157. Yang S, Johnston N, Talideh E, Mitchell S, Jeffree C, Goodrich J, Ingram G (2008) The endosperm-specific ZHOUPI gene of Arabidopsis thaliana regulates endosperm breakdown and embryonic epidermal development. Development 135:3501–3509PubMedCrossRefGoogle Scholar
  158. Yang WC, Shi DQ, Chen YH (2010) Female gametophyte development in flowering plants. Annu Rev Plant Biol 61:89–108PubMedCrossRefGoogle Scholar
  159. Young TE, Gallie DR (2000a) Programmed cell death during endosperm development. Plant Mol Biol 44:283–301PubMedCrossRefGoogle Scholar
  160. Young TE, Gallie DR (2000b) Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Mol Biol 42:397–414PubMedCrossRefGoogle Scholar
  161. Young TE, Gallie DR, DeMason DA (1997) Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol 115:737–751PubMedGoogle Scholar
  162. Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095PubMedCrossRefGoogle Scholar
  163. Zhang DS, Liang WQ, Yuan Z, Li N, Shi J, Wang J, Liu YM, Yu WJ, Zhang DB (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1:599–610PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yadira Olvera-Carrillo
    • 1
    • 2
  • Yuliya Salanenka
    • 1
    • 2
  • Moritz K. Nowack
    • 1
    • 2
  1. 1.Department of Plant Systems BiologyVIBGhentBelgium
  2. 2.Department Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium

Personalised recommendations