Green Nitride LEDs

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 156)

Abstract

The “green gap” is a major unsolved obstacle in current efforts to create high-efficiency solid-state solutions. The gap gets deeper at high injection currents, as green LEDs exhibit more pronounced efficiency droop than other visible LEDs. This chapter reviews recent advances in the development of high-brightness InGaN-based green LEDs on c-plane substrates as well as nonpolar and semipolar substrates. The influences of piezoelectric polarization and carrier localization effects on the LED performance are discussed. Recent work on efficiency droop in green LEDs is reviewed and a summary of the understanding of this problem is given.

Keywords

Indium Content Green Lead Hydride Vapor Phase Epitaxy Piezoelectric Polarization Efficiency Droop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author would like to thank his colleagues and collaborators: Dr. S. F. LeBoeuf, Dr. L. B. Rowland, Dr. W. Wang, Dr. C. H. Yan, and Dr. Y. Yang.

References

  1. 1.
    JY Tsao(ed) Light emitting diodes for general illumination, an OIDA Technology Roadmap. (Optoelectronics Industry Development Association Washington, DC, 2002)Google Scholar
  2. 2.
    Solid-State Lighting Research and Development Multi-Year Program Plan (2009) U.S. Department of Energy. http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2009{\_}web.pdf
  3. 3.
    M.S. Shur, A. Zukauskas, Solid-State Lighting: Toward Superior Illumination, Proc. IEEE. 93(10), 1691–1703 (2005)CrossRefGoogle Scholar
  4. 4.
    S. Nakamura, S.J. Pearton, G. Fasol, The Blue Laser Diode (Springer, Heildelberg, Germany, 2000)Google Scholar
  5. 5.
    C. Wetzel, T. Detchprohm, MRS Internet J. Nitride Semicond. Res. 10, 1–13 (2005)Google Scholar
  6. 6.
    J. Piprek, Phys. Stat. Sol. (a). 207(10), 2217–2225 (2010)Google Scholar
  7. 7.
    J.H. Leach, X. Ni, J. Lee, U. Ozgur, A. Matulionis, H. Morkoc, Phys Stat, Sol (a). 207(5), 1091–1100 (2010)Google Scholar
  8. 8.
    X.A. Cao, Y. Yang, H. Guo, J Appl Phys 104, 093108 (2008)CrossRefGoogle Scholar
  9. 9.
    S.F. Chichibu, Y. Kawakami, T. Sota, Emission Mechanisms and Excitons in GaN and InGaN Bulk and QWs. In: Nakamura S, Chichibu SF (ed), Introduction to Nitride Semi-conductor Blue Lasers and Light Emitting Diodes. (Taylor and Francis, New York, 2000)Google Scholar
  10. 10.
    X.A. Cao, III-nitride Light-emitting diodes on novel substrates. In: Neumark GF, Kuskovsky I, Jiang H (ed.) Wide Bandgap Light Emitting Materials and Devices, (Wiley-VCH, 2007)Google Scholar
  11. 11.
    J.H. Ryou P.D. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, H.J. Kim, R.D. Dupuis, IEEE J Sel Top Quantum Electron 15(4), 1080–1091 (2009)CrossRefGoogle Scholar
  12. 12.
    J.J. Wierer, D.A. Steigerwald, M.R. Krames, J.J. O’Shea, M.J. Ludowise, G. Christenson, Y.C. Shen, C. Lowery, P.S. Martin, S. Subramanya, W. Gotz, N.F. Gardner, R.S. Kern, S.A. Stockman, Appl Phys Lett 78, 3379–3381 (2001)CrossRefGoogle Scholar
  13. 13.
    S.P. DenBaars, S. Keller, MOCVD of Group III-Nitrides In: Gallium Nitride (II) Pankove JI, Moustakas TD (ed), (Academic, San Diego, 1998)Google Scholar
  14. 14.
    H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl Phys Lett 48, 353–355 (1986)CrossRefGoogle Scholar
  15. 15.
    S. Nakamura, Jpn J Appl Phys 30, L1705–1707 (1991)CrossRefGoogle Scholar
  16. 16.
    X.H. Wu, C.R. Elsass, A. Abare, M. Mack, S. Keller, P.M. Petroff, S.P. DenBaars, J.S. Speck, S.J. Rosner, Appl Phys Lett 72, 92–94 (1998)Google Scholar
  17. 17.
    D.I. Florescu, S.M. Ting, J.C. Ramer, D.S. Lee, V.N. Merai, A. Parkeh, D. Lu, E.A. Armour, L. Chernyak, Appl Phys Lett 83, 33–35 (2003)CrossRefGoogle Scholar
  18. 18.
    Y. Yang, X.A. Cao, C.H. Yan, Appl Phys Lett 94, 041117 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Razeghi, C. Bayram, R. McClintock, F.H. Teherani, D.J. Rogers, V.E. Sandana, J Light Emitting Diodes 2(1), 1–32 (2010)Google Scholar
  20. 20.
    M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, S. Porowski, T.D. Moustakas, J Appl Phys 76, 4909–4911 (1994)CrossRefGoogle Scholar
  21. 21.
    L.T. Romano, C.G. Van de Walle, I.I.I.J.W. Ager, W. Götz, R.S. Kern, J Appl Phys 87, 7745–7752 (2000)Google Scholar
  22. 22.
    M.S. Oh, M.K. Kwon, I.K. Park, S.H. Baek, S.J. Park, S.H. Lee, J.J. Jung, J Cryst Growth 289, 107–112 (2006)CrossRefGoogle Scholar
  23. 23.
    N.A. El-Masry, E.L. Piner, S.X. Liu, S.M. Bedair, Appl Phys Lett 72, 40–42 (1998)CrossRefGoogle Scholar
  24. 24.
    C.F. Huang, T.C. Liu, Y.C. Lu, W.Y. Shiao, Y.S. Chen, J.K. Wang, C.F. Lu, C.C. Yang, J Appl Phys 104, 123106 (2008)CrossRefGoogle Scholar
  25. 25.
    X.H. Wang, L.W. Guo, H.Q. Jia, Z.G. Xing, Y. Wang, X.J. Pei, J.M. Zhou, H. Chen, Appl Phys Lett 94, 111913 (2009)CrossRefGoogle Scholar
  26. 26.
    C.H. Chen, Y.K. Su, S.J. Chang, G.C. Chi, J.K. Sheu, J.F. Chen, C.H. Liu, Y.H. Liaw, IEEE Electron Dev Lett 23(3), 130–132(2002)CrossRefGoogle Scholar
  27. 27.
    W.V. Lundin, A.E. Nikolaev, A.V. Sakharov, E.E. Zavarin, G.A. Valkovskiy, M.A. Yagovkina, S.O. Usov, N.V. Kryzhanovskaya, V.S. Sizov, P.N. Brunkov, A.L. Zakgeim, A.E. Cherniakov, N.A. Cherkashin, M.J. Hytch, E.V. Yakovlev, D.S. Bazarevskiy, M.M. Rozhavskaya, A.F. Tsatsulnikov, J Cryst Growth 315(1), 267–271 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Zhao, G. Liu, X.H. Li, G.S. Huang, J.D. Poplawsky, S.T. Penn, V. Dierolf, N. Tansu, Appl Phys Lett 95, 061104 (2009)CrossRefGoogle Scholar
  29. 29.
    H. Zhao, R.A. Arif, N. Tansu, IEEE J Sel Top Quantum Electron 15, 1104–1114 (2009)CrossRefGoogle Scholar
  30. 30.
    E.H. Park, D. Nicol, H. Kang, I.T. Ferguson, S.K. Jeon, J.S. Park, T.K. Yoo, Appl Phys Lett 90, 031102 (2006)CrossRefGoogle Scholar
  31. 31.
    J.H. Ryou, J. Limb, W. Lee, J. Liu, Z. Lochner D. Yoo, R.D. Dupuis, IEEE Photon Technol Lett 20(21), 1769–1771 (2008)CrossRefGoogle Scholar
  32. 32.
    L.W. Wu, S.J. Chang, Y.K. Su R.W. Chuang, T.C. Wen, C.H. Kuo, W.C. Lai, C.S. Chang, J.M. Tsai, J.K. Sheu, IEEE Trans Electron Dev 50(8), 1766–1770 (2003)CrossRefGoogle Scholar
  33. 33.
    J.W. Ju, E.S. Kang, H.S. Kim, L.W. Jang, H.K. Ahn, J.W. Jeon, I.H. Lee, J.H. Baek, J Appl Phys 102, 053519 (2007)CrossRefGoogle Scholar
  34. 34.
    H.J. Kim, S. Choi, S.S. Kim, J.H. Ryou, P.D. Yoder, R.D. Dupuis, A.M. Fischer, K. Sun, F.A. Ponce, Appl Phys Lett 96, 101102 (2010)CrossRefGoogle Scholar
  35. 35.
    M. Bockowski, P. Strak, I. Grzegory, B. Lucznik, S. Porowski, J Cryst Growth 310(17), 3924–3933 (2008)CrossRefGoogle Scholar
  36. 36.
    D. Ehrentraut, Z. Sitar, MRS Bull 34(4), 259–265 (2009)CrossRefGoogle Scholar
  37. 37.
    T. Hashimoto, E. Lettsa, M. Ikaria, Y. Nojima, J Cryst Growth 312(18), 2503–2506 (2010)CrossRefGoogle Scholar
  38. 38.
    D. Gogova, A. Kasic, H. Larsson, C. Hemmingsson, B. Monemar, F. Tuomisto, K. Saarinen, L. Dobos, B. Pecz, P. Gibart, B.Beaumont J Appl Phys 96(1), 799–806 (2004)Google Scholar
  39. 39.
    X. Xu, R.P. Vaudo, J. Flynn, J. Dion, G.R. Brandes, Phys Stat Sol (a) 202, 727–730 (2005)Google Scholar
  40. 40.
    K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao J Cryst Growth 311(10), 3011–3014 (2009)CrossRefGoogle Scholar
  41. 41.
    X.A. Cao, S.F. LeBoeuf, M.P. D’Evelyn, S.D. Arthur, J. Kretchmer, C.H. Yan, Z.H. Yang, Appl Phys Lett 84(21), 4313–4315 (2004)CrossRefGoogle Scholar
  42. 42.
    C.R. Miskys, M.K. Kelly, O. Ambacher, G. Martinez-Criado, M. Stutzmann, Appl Phys Lett 77, 1858–1860 (2000)CrossRefGoogle Scholar
  43. 43.
    X.A. Cao, H. Lu, S.F. LeBoeuf, C. Cowen, S.D. Arthur, W. Wang, Appl Phys Lett 87, 053503 (2005)CrossRefGoogle Scholar
  44. 44.
    I. Arslan, N.D. Browning, Phys Rev Lett 91, 165501 (2003)CrossRefGoogle Scholar
  45. 45.
    X.A. Cao, S.D. Arthur, Appl Phys Lett 85(18), 3971–3973 (2004)CrossRefGoogle Scholar
  46. 46.
    X.A. Cao, J.M. Teetsov, M.P. D’Evelyn, D.W. Merfeld, C.H. Yan, Appl Phys Lett 85(1), 7–9 (2004)CrossRefGoogle Scholar
  47. 47.
    H. Masui, S. Nakamura, S.P. DenBaars, U.K. Mishra, IEEE Trans Electron Dev 57(1), 88–100 (2010)CrossRefGoogle Scholar
  48. 48.
    D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Phys Rev Lett 53(22), 2173–2176 (1984)CrossRefGoogle Scholar
  49. 49.
    F. Bernardini, V. Fiorentini, Appl Surf Sci. 166(1–4), 23–29 (2000)CrossRefGoogle Scholar
  50. 50.
    H. Masui, J. Sonoda, N. Pfaff, I. Koslow, S. Nakamura, S.P. DenBaars, J Phys D:Appl Phys 41, 165105 (2008)CrossRefGoogle Scholar
  51. 51.
    Y.D. Jho, J.S. Yahng, E. Oh, D.S. Kim, Phys Rev B 66, 1–11 (2002)CrossRefGoogle Scholar
  52. 52.
    S.F. Chichibu, A.C. Abare, M.S. Minsky, S. Keller, S.B. Fleischer, J.E. Bowers, E. Hu, U.K. Mishra, L.A. Coldren, S.P. DenBaars, Appl Phys Lett 73(14), 2006–2008 (1998)CrossRefGoogle Scholar
  53. 53.
    P. Waltereit, O. Brandt, J. Ringling, K.H. Ploog, Phys Rev B 64(24), 245305 (2001)CrossRefGoogle Scholar
  54. 54.
    A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, J Appl Phys 100(2), 023522 (2006)CrossRefGoogle Scholar
  55. 55.
    B.A. Haskell, S. Nakamura, S.P. DenBaars, J.S. Speck, Phys. Stat. Sol (b) 244(8), 2847–2858 (2007)Google Scholar
  56. 56.
    P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog Nature 406, 865–868 (2000)Google Scholar
  57. 57.
    M.D. Craven, S.H. Lim, F. Wu, J.S. Speck, S.P. DenBaars, Phys Stat Sol (a), 194(2), 541–544 (2002)Google Scholar
  58. 58.
    M.D. Craven, A. Chakraborty, B. Imer, F. Wu, S. Keller, U.K. Mishra, J.S. Speck, S.P. DenBaars, Phys Stat Sol (c) (7), 2132–2135 (2003)Google Scholar
  59. 59.
    Y.S. Cho, Q. Sun, I.H. Lee, T.S. Ko, C.D. Yerino, J. Han, B.H. Kong, H.K. Cho, S. Wang, Appl Phys Lett 93, 111904 (2008)CrossRefGoogle Scholar
  60. 60.
    P. Waltereit, O. Brandt, M. Ramsteiner, A. Trampert, H.T. Grahn, J. Menniger, M. Reiche, K.H. Ploog, J Cryst Growth 227–228, 437–441 (2001)CrossRefGoogle Scholar
  61. 61.
    T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, S. Nakamura, Jpn J Appl Phys 44(28–32), L920–L922 (2005)CrossRefGoogle Scholar
  62. 62.
    T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S. Nakamura, Jpn J Appl Phys 45(4–7), L154–L157 (2006)CrossRefGoogle Scholar
  63. 63.
    T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, N. Sawaki, Phys Stat Sol (c) 5(6), 2234–2237 (2008)Google Scholar
  64. 64.
    R. Sharma, P.M. Pattison, H. Masui, R.M. Farrell, T.J. Baker, B.A. Haskell, F. Wu, S.P. DenBaars, J.S. Speck, S. Nakamura, Appl Phys Lett 87, 231110 (2005)CrossRefGoogle Scholar
  65. 65.
    N.F. Gardner, J.C. Kim, J.J. Wierer, Y.C. Shen, M.R. Krames, Appl Phys Lett 86, 111101 (2005)CrossRefGoogle Scholar
  66. 66.
    S.C. Ling, T.C. Wang, J.R. Chen, P.C. Liu, T.S. Ko, B.Y. Chang, T.C. Lu, H.C. Kuo, S.C. Wang, J.D. Tsay, IEEE Photon Technol Lett 21(16), 1130–1132 (2009)CrossRefGoogle Scholar
  67. 67.
    T. Detchprohm, M. Zhu, Y. Li, Y. Xia, C. Wetzel, E.A. Preble, L. Liu, T. Paskova, D. Hanser, Appl Phys Lett 92, 241109 (2008)CrossRefGoogle Scholar
  68. 68.
    T. Detchprohm, M. Zhu, Y. Li, L. Zhao, S. You, C. Wetzel, E.A. Preble, T. Paskova, D. Hanser, Appl Phys Lett 96, 051101 (2010)CrossRefGoogle Scholar
  69. 69.
    M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Mukai, Jpn J Appl Phys 45(24–28), L659–L662 (2006)CrossRefGoogle Scholar
  70. 70.
    H. Sato, A. Tyagi, H. Zhong, N. Fellows, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Phys Stat Sol (RRL) 1(4), 162–164 (2007)Google Scholar
  71. 71.
    H. Sato, R.B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl Phys Lett 92(22), 221110 (2008)CrossRefGoogle Scholar
  72. 72.
    N. Fellows, H. Sato, H. Masui, S.P. DenBaars, S. Nakamura, Jpn J Appl Phys 47(10), 7854–7856 (2008)CrossRefGoogle Scholar
  73. 73.
    S.E. Brinkley, Y.D. Lin, A. Chakraborty, N. Pfaff, D. Cohen, J.S. Speck, S. Nakamura, S.P. DenBaars, Appl Phys Lett 98, 011110 (2011)CrossRefGoogle Scholar
  74. 74.
    T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, S.F. Chichibu, Appl Phys Lett 91(18), 181903 (2007)CrossRefGoogle Scholar
  75. 75.
    H. Masui, H. Yamada, K. Iso, J.S. Speck, S. Nakamura, S.P. DenBaars, J Soc Inf Displays 16, 571–578 (2008)CrossRefGoogle Scholar
  76. 76.
    M. Marques L.K. Teles, L.M.R. Scolfaro, L.G. Ferreira, J.R. Leite, Phys Rev B 70, 073202 (2004)CrossRefGoogle Scholar
  77. 77.
    L. Nistor, H. Bender, A. Vantomme, M.F. Wu, J.V. Lauduyt, K.P. O’Donnell, R. Martin, K. Jacobs, I. Moerman, Appl Phys Lett 77, 507–509 (2000)CrossRefGoogle Scholar
  78. 78.
    D. Gerthsen, E. Hahn, B. Neubauer, A. Rosenauer, H.M. Schon, A. Rizzi, Phys Stat Sol (a) 177, 145–150 (2000)Google Scholar
  79. 79.
    K.P. O’Donnell, R.W. Martin, P.G. Middleton, Phys Rev Lett 82, 237–240 (1999)CrossRefGoogle Scholar
  80. 80.
    S.W. Feng, Y.C. Cheng, Y.Y. Chung, C.C. Yang, Y.S. Lin, C. Hsu, K.J. Ma, J.I. Chyi, J Appl Phys 92, 4441–4448 (2002)CrossRefGoogle Scholar
  81. 81.
    S. Chichibu, K. Wada, S. Nakamura, Appl Phys Lett 71, 2346–2348 (1997)CrossRefGoogle Scholar
  82. 82.
    K. Okamoto, A. Kaneta, Y. Kawakami, S. Fujita, J. Choi, M. Terazima, T. Mukai, J Appl Phys 98, 064503 (2005)CrossRefGoogle Scholar
  83. 83.
    Y.J. Sun, O. Brandt, S. Cronenberg, S. Dhar, H.T. Grahn, K.H. Ploog, P. Waltereit, J.S. Speck Phys Rev B 67, 041306(R) (2003)Google Scholar
  84. 84.
    M. Funato, Y. Kawakami, J Appl Phys 103, 093501 (2008)CrossRefGoogle Scholar
  85. 85.
    M. Funato, A. Kaneta, Y. Kawakami, Y. Enya, K. Nishizuka, M. Ueno, T. Nakamura, Appl Phys Express 3, 021002 (2010)CrossRefGoogle Scholar
  86. 86.
    X.A. Cao, S.F. LeBoeuf, T.E. Stecher, IEEE Electron Dev Lett 27, 329–331 (2006)CrossRefGoogle Scholar
  87. 87.
    X.A. Cao, S.F. LeBoeuf, IEEE Electron Dev Lett 54(12), 3114–3417 (2007)Google Scholar
  88. 88.
    X.A. Cao, S.F. LeBoeuf, L.B. Rowland, C. Yan, H. Liu, Appl Phys Lett 83(21), 3614–3616Google Scholar
  89. 89.
    W. Shan, T.J. Schmidt, X.H. Yang, S.J. Hwang, J.J. Song, B. Goldenberg, Appl Phys Lett 66, 985–987 (1995)CrossRefGoogle Scholar
  90. 90.
    I.L. Krestnikov, N.N. Ledentsov, A. Hoffmann, D. Bimberg, A.V. Sakharov, W.V. Lundin, A.F. Tsatsulnikov, A.S. Usikov, Z.I. Alferov, Y.G. Musikhin, D. Gerthsen, Phys Rev B 66, 155310 (2002)CrossRefGoogle Scholar
  91. 91.
    D.M. Graham, A. Soltani-Vala, P. Dawson, M.J. Godfrey, T.M. Smeeton, J.S. Barnard, M.J. Kappers, C.J. Humphreys, E.J. Thrush, J Appl Phys 97, 103508 (2005)CrossRefGoogle Scholar
  92. 92.
    M.J. Galtrey, R.A. Oliver, M.J. Kappers, C.J. Humphreys, P.H. Clifton, D. Larson, D.W. Saxey, A. Cerezo, J Appl Phys 104, 013524 (2008)CrossRefGoogle Scholar
  93. 93.
    J.P. O’Neill, I.M. Ross, A.G. Cullis, T. Wang, P.J. Parbrook, Appl Phys Lett 83, 1965–1967 (2003)CrossRefGoogle Scholar
  94. 94.
    T.M. Smeeton, C.J. Humphreys, J.S. Barnard, M.J. Kappers, J Mater Sci 41, 2729–2737 (2006)CrossRefGoogle Scholar
  95. 95.
    A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, P. Hinze, Phys Rev Lett 95, 127402 (2005)CrossRefGoogle Scholar
  96. 96.
    N.K. van der Laak, R.A. Oliver, M.J. Kappers, C.J. Humphreys, J Appl Phys 102, 013513 (2007)CrossRefGoogle Scholar
  97. 97.
    D.M. Graham, P. Dawson, M.J. Godfrey, M.J. Kappers, C.J. Humphreys, Appl Phys Lett 89, 211901 (2006)CrossRefGoogle Scholar
  98. 98.
    Y. Yang, X.A. Cao, C.H. Yan, IEEE Trans Electron Dev 55(7), 1771–1775 (2008)CrossRefGoogle Scholar
  99. 99.
    B. Monemar, B.E. Sernelius, Appl Phys Lett 91, 181103 (2007)CrossRefGoogle Scholar
  100. 100.
    M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Appl Phys Lett 91, 183507 (2007)CrossRefGoogle Scholar
  101. 101.
    K.J. Vampola, M. Iza, S. Keller, S.P. DenBaar, S. Nakamura, Appl Phys Lett 94(6), 061116 (2009)CrossRefGoogle Scholar
  102. 102.
    Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Appl Phys Lett 91, 141101 (2007)CrossRefGoogle Scholar
  103. 103.
    K.T. Delaney, P. Rinke, C.G. Van de Walle, Appl Phys Lett 94(19), 191109 (2009)CrossRefGoogle Scholar
  104. 104.
    J. Xu, M.F. Schubert, A.N. Noemaun, D. Zhu, J.K. Kim, E.F. Schubert, M.H. Kim, H.J. Chung, S. Yoon, C. Sone, Y. Park, Appl Phys Lett 94, 011113 (2009)CrossRefGoogle Scholar
  105. 105.
    N.F. Gardner, G.O. Müeller, Y.C. Shen, G. Chen S. Watanabe, Appl Phys Lett 91, 243506 (2007)CrossRefGoogle Scholar
  106. 106.
    Y.J. Lee, C.H. Chen, C.J. Lee, IEEE Photon Technol Lett 22(20), 1506–1508 (2010)CrossRefGoogle Scholar
  107. 107.
    S.C. Ling, T.C. Lu, S.P. Chang, J.R. Chen, H.C. Kuo, S.C. Wang, Appl Phys Lett 96, 231101 (2010)CrossRefGoogle Scholar
  108. 108.
    Y.D. Lin, A. Chakraborty, S. Brinkley, H.C. Kuo, T. Melo, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl Phys Lett 94(26), 261–108 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Computer Science and Electrical EngineeringWest Virginia UniversityMorgantownUSA

Personalised recommendations