Advertisement

Enhancing Macrocell Downlink Performance through Femtocell User Cooperation

  • Adem M. Zaid
  • Bechir Hamdaoui
  • Taieb Znati
  • Xiuzhen Cheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6843)

Abstract

This paper studies cooperative techniques that rely on femtocell user diversity to improve the downlink communication quality of macrocell users. We analytically analyze and evaluate the achievable performance of these techniques in the downlink of Rayleigh fading channels. We provide an approximation of both the bit-error rate (BER) and the data throughput that macrocell users receive with and without femtocell user cooperation. Using simulations, we show that under reasonable SNR values, cooperative schemes improve both the BER and the data throughput of macrocell users significantly when compared with the traditional, non-cooperative scheme.

Keywords

Destination Node Relay Node Receive Signal Strength Cooperative Scheme Maximum Ratio Combine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adeane, J., Rodrigues, M., Wassell, I.: Characterisation fo the performance of cooperative networks in ricean fading channels. In: Presented at the 12th Int. Conf. Telecommun, Cape Town, South Africa (2005)Google Scholar
  2. 2.
    Ashraf, I., Claussen, H., Ho, L.: Distributed radio coverage optimization in enterprise femtocell networks. In: IEEE International Conference on Communications, ICC (2010)Google Scholar
  3. 3.
    Karthikeyan Sundaresan, S.R.: Efficient resource management in ofdma femto cells. In: Proceedings of the Tenth ACM International Symposium on Mobile Ad Hoc Networking and Computing MobiHoc (2009)Google Scholar
  4. 4.
    Karthikeyan Sundaresan, S.R.: Mitigation of inter-femtocell interference with adaptive fractional frequency reuse. In: IEEE International Conference on Communications, ICC (2010)Google Scholar
  5. 5.
    Lee, P., Lee, T., Jeong, J., Shin, J.: Interference management in LTE femtocell systems using fractional frequency reuse. In: ICACT 2010 Proceedings of the 12th International Conference on Advanced Communication Technology (2010)Google Scholar
  6. 6.
    Lee, T., Kim, H., Park, J., Shin, J.: An efficient resource allocation in ofdma femtocells networks. In: IEEE 72nd Vehicular Technology Conference (2010)Google Scholar
  7. 7.
    Moon, J., Cho, D.: Novel handoff decision algorithm in hierarchical macro/femto-cell networks. In: IEEE Wireless Communications and Networking Conference, WCNC (2010)Google Scholar
  8. 8.
    Namgeol, O., Han, S., Kim, H.: System capacity and coverage analysis of femtocell networks. In: IEEE Wireless Communications and Networking Conference, WCNC (2010)Google Scholar
  9. 9.
    Perez, D., Valcarce, A.: OFDMA femtocells: A roadmap on interference avoidance. IEEE Communications Magazine (September 2009)Google Scholar
  10. 10.
    Perez, D., Ladanyi, A., Juttner, A., Zhang, J.: OFDMA femtocells: Intracell handover for interference and handover mitigation in two-tier networks. In: Wireless Communications and Networking Conference, WCNC (2010)Google Scholar
  11. 11.
    Sankar, K.: Maximal ratio combining (MRC) (2008), http://www.dsplog.com/2008/09/28/maximal-ratio-combining/
  12. 12.
    Schroder, A., Lundqvist, H., Nunzi, G., Brunner, M.: User-assisted coverage and interference optimization for broadband femtocells. In: IFIP/IEEE International Symposium on Integrated Network Management-Workshops (2009)Google Scholar
  13. 13.
    Shaohong, W., Xin, Z., Ruiming, Z., Zhiwei, Y., Yinglong, F., Dacheng, Y.: Handover study concerning mobility in the two-hierarchy network. In: Proceedings of IEEE Vehicular Technology Conference VTC (2009)Google Scholar
  14. 14.
    Simon, M., Alouini, M.: Digital Communication Over Fading Channels: a unified approach to performance analysis. A Wiley-Interscience Publication, New York (2000)CrossRefGoogle Scholar
  15. 15.
    Zaman, M., Jang, Y., Haas, Z.: Interference mitigation using dynamic frquency re-use for dense femtocell network architectures. In: Ubiquitous and Future Networks, ICUFN (2010)Google Scholar
  16. 16.
    Zaman, M., Ryu, W., Rhee, E., Jang, Y.: Handover between macrocell and femtocell umts based networks. Advanced Communication Technology, ICACT 2009 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Adem M. Zaid
    • 1
  • Bechir Hamdaoui
    • 1
  • Taieb Znati
    • 2
  • Xiuzhen Cheng
    • 3
  1. 1.Oregon State UniversityUSA
  2. 2.University of PittsburghUSA
  3. 3.George Washington UniversityUSA

Personalised recommendations